\mathbf{Q} \mathbf{Q} Choose the correct answer:

(1)	The length of two sides in an isosceles triangle are 4 cm,	9 cm,
	then the length of the third side = cm	

a) 4

b) 5

c) 9

(2) If the measure of two angles in a triangle are 55°, 70°, then the triangle is triangle

- a) Isosceles
- b) Equilateral c) Scalene
- d) Obtuse
- (3) The measure of the exterior angle of an equilateral triangle=°
- a) 60
- b) 120
- c) 180
- d) 360

- **(4)** In \triangle ABC, AC + BC AB zero
- a) ≤

b) >

c)

d) <

(5) The length of hypotenuse = the length of the median whose drawn from the vertex of right angle

- a) Half
- b) Third
- c) Quarter
- d) Twice

(6) If $X \in axis$ of symmetry of \overline{BC} , then \overline{XB} \overline{XC}

a) >

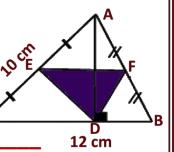
b)

c) < $d) \equiv$

Q2> <u>Complete each of the following:</u>

1) The intersecting point of the medians of triangle divide each of them with ratio 1: From the vertex.

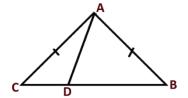
In \triangle ABC, AB = 6 cm , BC = 8 cm, AC = 4 cm, then m(\angle C) > m(....) 2)


3) The longest side in the right angled-triangle is

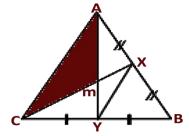
4) If ABCD is a parallelogram, $m(\angle A)+m(\angle C)=110^{\circ}$, then $m(\angle D)=...$

If the length of any side of a triangle = $\frac{1}{3}$ perimeter of triangle, 5) then the triangle has axes of symmetry

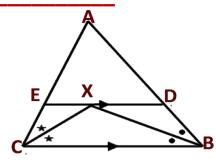
Q3 A) In the opposite figure:


 Δ ABC , F,E are midpoint of \overline{AB} , \overline{AC} respectively $\overline{AD} \perp \overline{BC}$, AB = 8 cm , AC = 10 cm, BC = 12 cm \Rightarrow **Find** the perimeter of Δ DFE

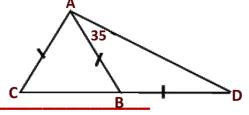
B) In the opposite figure:


AB = AC,

Prove that: AB > AD

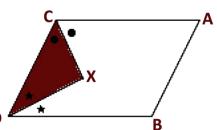

Q4 A) In the opposite figure:

X , Y midpoints of \overline{AB} , \overline{BC} respectively $\overline{AY} \cap \overline{XC} = \{m\}$, XY = 6 cm, MY = 4 cm XC = 9 cm. Find the perimeter of Δ ABC


B) In the opposite figure:

AB = 8 cm, AC = 6cm \overline{DE} // \overline{BC} , \overline{BX} bisects \angle (DBC) , \overline{CX} bisects \angle (BCE) Find the area of \triangle ADE

Q5 A) In the opposite figure:


AB = BC = AC, m (\angle DAB) = 35° Find by proof m (\angle BAC)

B) In the opposite figure:

ABCD is a parallelogram, \overline{XD} Bisects \angle (ACD)

Prove that: AB > XC

$\langle\!\!\langle {f Q} {f 1} \!\! angle$ Choose the correct answer:

- (1) In \triangle ABC, \overline{AD} is median, m is concurrence point, then AM=.... AD
- a) 2

- b) $\frac{1}{2}$
- d)
- (2) \triangle XYZ, XY = XZ, then the exterior angle at Vertex **Z** is
- a) Acute
- b) Right
- c) Obtuse
- (3) A triangle its sides 4 cm, 7 cm, X cm, then $X \in \dots$
- a) [3,11]
- b)]3,11[c) [3,11[d)]3,11]

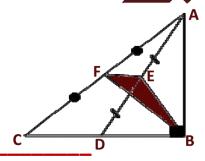
- (4) The triangle has two angles of measure 50°, 60°, then the number of axes of symmetry
- a) Zero
- b) 1
- c) 2

- (5) Length of hypotenuse= the side opposite to 30°
- a) 2

- b) $\frac{1}{2}$

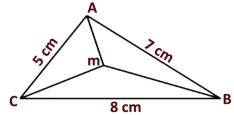
- **(6)** In \triangle ABC, AB = AC, m (\angle A) = 50°. then BC AB
- a) <

b) =


c) >

Q2> <u>Complete each of the following:</u>

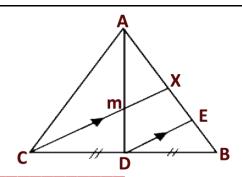
- In \triangle ABC, D is midpoint of \overline{BC} , AD = $\frac{1}{2}$ BC, then m (\angle A) = 1)
- The bisector of vertex of isosceles triangle bisects 2) and perpendicular to it.
- 3) In \triangle ABC, AB + BC >
- If the vertically opposite angles are complementary, then the 4) measure of each one =°
- The axis of symmetry of a line segment is straight line 5)


Q3> A) In the opposite figure:

M (\angle ABC) = 90°, E midpoint of \overline{AD} F midpoint of \overline{AC} , AD = 10 cm, DC = 6 cm AC = 12 cm. find the perimeter of \triangle BEF

B) In the opposite figure:

Prove that: MB + MA + MC > 10 cm



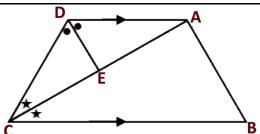
Q4>A) In the opposite figure:

D is midpoint of BC, $\overline{AD} \cap \overline{CX} = \{ m \}$

AM : MD = 2 : 1, \overline{DE} // \overline{XC} If XM = 6 cm

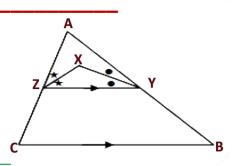
Find the length of \overline{DE} ?

B) In the opposite figure:


BD = DC = CB, AB = ACM (\angle BAC) = 30°, Find the m (\angle ABD)?

Q5> A) In the opposite figure:

 \overline{AD} // \overline{BC} , \overrightarrow{DE} bisects ($\angle ADC$), \overrightarrow{CA} bisects (\angle BCD), <u>Prove that</u>:


① E midpoint of \overline{AC} ② $\overline{DE} \perp \overline{AC}$

B) In the opposite figure:

AB > AC, \overline{YZ} // \overline{BC} , \overline{XY} bisects \angle (AYZ) \overline{XZ} bisects ($\angle AZY$).

Prove that: XY > XZ

Q1 Choose the correct answer:

(1)	\overline{AD} is a median in Δ	ABC, AD = $\frac{1}{2}$	BC, then ∠ A is
-----	---	-------------------------	-----------------

- a) Acute
- b) Obtuse
- c) Right
- d) Straight
- (2) The measure of exterior angle of an equilateral triangle =°
- a) 60
- b) 90
- c) 120
- d) 180
- a) Zero
- b) 1

c) 2

d) :

- **(4)** In \triangle ABC, AB + BC CA >
- a) Zero
- b) 1

c) 2

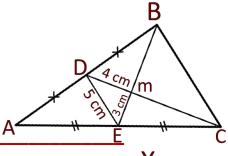
- d) 3
- (5) ABCD is a rhombus, AC > BD, then m (\angle D) m (\angle C)
- a) >

b) =

- c) <
- d) ≤

Q2> Complete each of the following:

- 1) If 5,7,X are lengths of triangle sides, then $X \in]......$

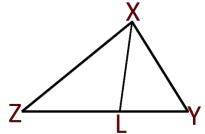

- 4) The bisector of the vertex angle of an isosceles triangle.....
- 5) In \triangle ABC, AB = AC, m (\angle A) = 3 m (\angle B), then m(\angle C) =°
- 6) In \triangle ABC if $\overline{AB} \perp \overline{BC}$ and AB = BC then m (\angle A) =°

Math questions bank

The Second grade preparatory

Q3 A) In the opposite figure:

M is intersection point of medians ME = 3 cm, MD = 4 cm, DE = 5 cm. Find the perimeter of Δ MBC

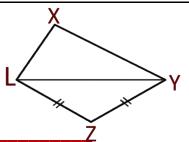


B) In the opposite figure:

In Δ XYZ, L \in YZ

Prove that:

Perimeter of Δ XYZ > 2 X L

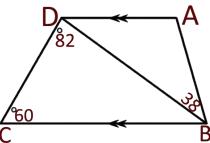


Q4 A) In the opposite figure:

XY > XL, ZY = ZL

Prove that:

 $m (\angle XLZ) > m (\angle XYZ)$

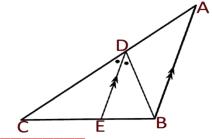


B) In the opposite figure:

AD // BC, m (\angle BCD) = 82°, m(\angle ABD) = 38°

 $M(\angle BCD) = 60^{\circ}$. Prove that:

 Δ ABD is an isosceles triangle

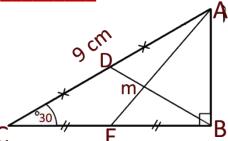


Q5 A) In the opposite figure:

If \overline{DE} // \overline{AB}

 \overrightarrow{DE} Bisects \angle BDC

Prove that: AC > BC



B) In the opposite figure:

 \triangle ABC is right at B, m(\angle C) = 30°,

D is midpoint of \overline{AC} , E is midpoint of \overline{BC}

AC = 9 cm. Find length of \overline{BM} , \overline{AB}

$\langle Q1 \rangle$ Choose the correct answer:

(1) \overline{AD} is a median in \triangle ABC, AD = $\frac{1}{2}$ BC, then (\angle A) is

- a) Acute
- b) Right
- c) Reflex d) obtuse

(2) If $D \in axis of symmetry of \overline{AB}$, then AD BD

- a) ⊥

(3) The triangle with sides 2 cm, (X+3) cm, 5 cm is isosceles triangle when x =.....

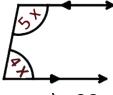
- a) -1
- b) 2

c) 3

d) 4

(4) The sum of measures of exterior angles for equilateral triangle =

- a) 60°
- b) 120°
- 180°
- d) 360°


(5) The intersecting point of the median of triangle divide it with ratio 2: from the base.

a) 1

b) 2

d) 4

(6) In the opposite figure: X =..... °

- a) 20
- b) 40
- 90
- d) 180

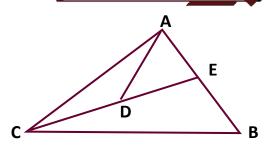
Q2> Complete each of the following:

1) If 3, 4, x + 2 are sides lengths of a triangle, then $X \in]....,....[$

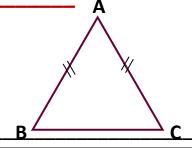
 \triangle ABC , AB = AC , m(\angle A) = 60° and its perimeter = 12 cm , then 2) BC =

In \triangle ABC, m(\angle B) =90°, m(\angle A) = 30°, then AC = BC 3)

The bisector of the vertex angle in isosceles triangle bisect the 4) base and


In \triangle ABC, AB = BC, m(\angle B) = 50°, then m(\angle A) > 5)

Q3> A) In the opposite figure:


AD = CD = ED

Prove that: BC > AC

B) In the opposite figure:

AB = AC, $m(\angle A) = x$, $m(\angle B) = 2x$ **<u>Find</u>** m(\angle C) in degree.



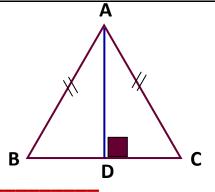
Q4>A) In the opposite figure:

 Δ ABC , D is a midpoint of \overline{BC}

Prove that:

Perimeter of Δ ADC > Perimeter of Δ ABD

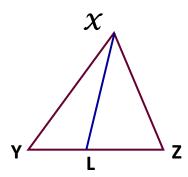
B) \triangle ABC, m(\angle A) = 75°, m(\angle B) = 40°.


Arrange descending the sides' length of triangle ABC.

Q5 A) In the opposite figure:

AB = AC , $\overline{AD} \perp \overline{BC}$, AB = 13 cm BC = 10 cm,

Find:


- ① Length of \overline{BD}
- ② Area of Λ ABC

B) In the opposite figure:

Prove that:

Perimeter of Δ XYZ > 2 XL

$\langle Q1 angle \,$ Choose the correct answer:

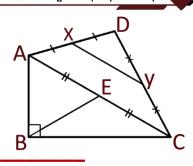
- (1) The number of axes of symmetry of isosceles triangle =
- a) Zero
- b) 1

- (2) XA = XB and YA = YB, then \overrightarrow{XY} \overline{AB}
- a) //
- b) ⊥

- d) =
- **(3)** In \triangle ABC, m (\angle C) = 65°, m (\angle A) = 75° then ..
- a) AB > BC
- b) AB < AC
- c) BC > AB
- d) AB = AC
- (4) If M is the point of intersection of medians of Δ ABC, D is midpoint of \overline{BC} , then AD =
- a) 2 AM
- b) 4 MD
- c) $\frac{2}{3}$ MD d) $\frac{1}{2}$ AM
- (5) The set of numbers can be lengths of sides of triangle are
- a) {4, 6, 10}
- b) {4, 6, 8} c) {2, 6, 3}
- d) {4, 5, 10}
- **(6)** In \triangle ABC, m (\angle A) + m (\angle B) < m (\angle C), then AB BC
- a) <
- b) =

 $d) \leq$

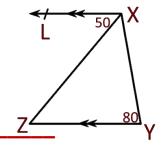
Q2> <u>Complete each of the following:</u>


- 1) In the isosceles triangle, if AB = AC, $m(\angle A) = 70^{\circ}$, then AB <
- 2) In \triangle ABC, if m (\angle A) = 30° and m(\angle B) = 90°, then BC = AC
- If the measure of two angles in a triangle are different, then the 3) greater in measure of them is opposite to
- If the measure of the vertex angle of an isosceles triangle is 80°, 4) then the measure of each of two base angle equal
- The measure of the exterior angle of the equilateral $\Delta = \dots$

Math questions bank

The Second grade preparatory

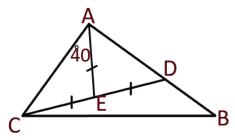
X is midpoint of \overline{AD} , Y is midpoint of \overline{CD} E is midpoint of \overline{AC} , m (\angle ABC) = 90° XY = 6 cm. Find length of \overline{BE}


 Δ ABC, D $\in \overline{BC}$, AD = AC B)

Prove that: AB > AD

 $XL // YZ, m (\angle Y) = 80^{\circ}$

M ($\angle L X Z$) = 50°. Prove that: XY = Y Z

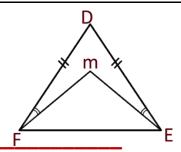

B) In the opposite figure:

DE = EC = AE

 $M(\angle EAC) = 40^{\circ}$

Prove that:

① AC > AE ② AC < BC



Q5> A) In the opposite figure:

If DE = DF, m \angle DEM) = m (\angle DFM)

Prove that:

 \overrightarrow{DM} is axis of symmetry of \overline{EF}

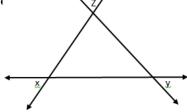
ABCD is a parallelogram, its diagonal intersect at M, draw \overrightarrow{BX} <u>B)</u> median in \triangle ABD cut \overline{AD} in X, \overline{AC} in N

Prove that: AN = $\frac{1}{3}$ AC

Q1> <u>Choose the correct answer:</u>

- (1) The number of axes of symmetry of equilateral triangle =
- a) 3

b) 2

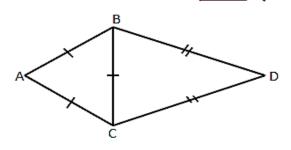

c) 1

- d) Zero
- (2) The set of numbers which can be lengths of sides of triangle are
- a) {5, 3, 8}
- b) {4, 6, 12} c) {2, 6, 3}
- d) {3, 5, 5}
- (3) In \triangle ABC, m (\angle C) = 65°, m (\angle A) = 75° then
- a) AB > BC
- b) AB < AC
- c) BC > AB
- d) AB = AC
- (4) If XA = XB and YA = YB, then \overline{XY} \overline{AB}
- a) //
- b) ⊥

- d)
- (5) In \triangle ABC, if m(\angle B) = 90°, D is midpoint of \overline{AC} , then AC=......
- a) 2 BD
- b) 4 BD
- c) $\frac{1}{2}$ BD
- d) $\frac{1}{2}$ AD
- (6) The measures of exterior angle of equilateral triangle =
- a) 60
- b) 120
- 180 c)
- 360

Q2> <u>Complete each of the following:</u>

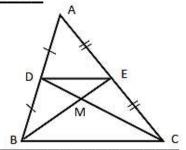
- The longest side in the right angled triangle is 1)
- The point of intersection of the medians of the triangle divides 2) each median in the ratio 4: from the ba
- In opposite figure X+Y+Z=º 3)


- \triangle ABC is an isosceles triangle, m (\angle B) = **100°** then m (\angle B)=..... 4)
- 5) In \triangle ABC if AB= 3 cm , BC= 4 cm , AC= X cm then X \in].....

Math questions bank

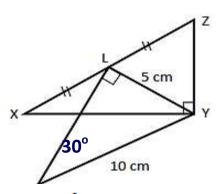
The Second grade preparatory

Q3 [A] In the opposite figure


AB = AC = BC , BD = DC
, m (
$$\angle$$
ABD) = 130°,
Find m (\angle D)

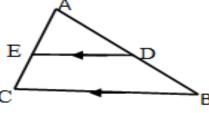
[B] In the opposite figure

D is midpoint of \overline{AB} , E is midpoint of \overline{AC} BM = 4 cm, MC = 6 cm, BC = 8 cm


Find the perimeter of Δ DME

Q4 [A] In the opposite figure

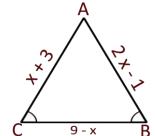
m (\angle XYZ) = m (\angle HLY) = 90° , m(\angle H) = 30° , LY = 5 cm, HY = 10 cm L is midpoint of \overline{XZ}


Find the length of \overline{XZ}

[B] In the opposite figure

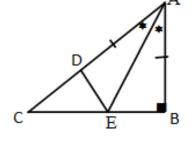
AB > AC, $\overline{ED} // \overline{BC}$

Prove that: AD > AE



Q5 [A] In the opposite figure

In \triangle ABC, m(\angle B) = m (\angle C)


AB = 2 X - 1, AC = X + 3, BC = 9 - X

Find the numerical value of perimeter of Δ ABC

[B] In the opposite figure

AB = AD, \overline{AE} bisects \angle BAC, $m(\angle ABC) = 90^{\circ}$, **Prove that** CE > EB

Q1 Choose the correct answer:

(1)) If Δ ABC is right angled triangle at B, AC = 10 cm, BC :	= 8 cm, ther
	the length of the median drawn from B =	cm

a) 5

b) 6

c) 8

d) 10

(2) The point of intersection of the medians of triangle divides each of them with the ratio offrom the base

- a) 1:2
- b) 2:1
- c) 1:3
- d) 3:1

(3) ABCD is a rhombus in which AC > BD, then $m(\angle D)$ $m(\angle C)$

a) >

b) <

c) =

d) <

(4) If the length of two sides of an isosceles triangle are 3 , 7 cm. then the length of the third side = cm

a) 3

b) 4

c) 7

d) 10

(5) In \triangle ABC, m (\angle B) = 70 °, m (\angle C) = 50 °, then BCAC

a) >

b) =

c) <

d) ≤

(6) \overline{AD} is median in Δ ABC, m is intersection point of its medians, AD = 6 cm, then AM = cm

a) 1

b) 2

c) 3

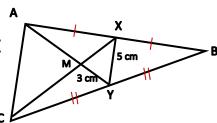
d) 4

Q2 Complete each of the following:

1) ABC, BC = AC, m (\angle A) = 2 m (\angle C), then m (\angle B) =

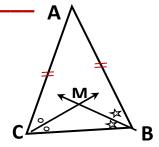
2) An isosceles triangle with vertex angle = 60 $^{\circ}$, its perimeter $3\sqrt{5}$ cm, then its side length

3) The vertex angel bisector in the isosceles triangle bisect the base and......

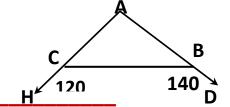

4) In a triangle, If its side lengths is 2, 4, X + 1 then $X \in],[$

5) The length of two sides in the triangle are not equal, then the greater side in length is opposite to

Q3 A) In the opposite figure:

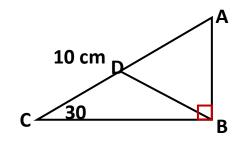

M is the intersection of the medians of Δ ABC XY = 5 cm, CX= 12 cm, MY = 3 cm.

Find with prove the perimeter of Δ MAC


B) In the opposite figure:

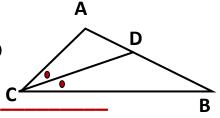
 \triangle ABC, AB = AC, \overrightarrow{BM} bisect (\angle B), \overrightarrow{CM} bisect (\angle C), without using the congruency **Prove that:** \overrightarrow{AM} is the axis of symmetry of \overrightarrow{BC}

Q4 A) In the opposite figure:


 \triangle ABC, D $\in \overrightarrow{AB}$, H $\in \overrightarrow{AC}$, m(\angle CBD) = 140° m(\angle BCH) = 120°. **Prove that BC > AB**

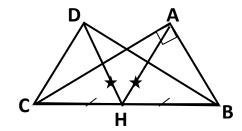
B) In the opposite figure:

 \triangle ABC right angled triangle at B D is midpoint of \overline{AC} , AC = 10 cm, m(\angle C) = 30°.


Calculate the perimeter of Δ ADB

Q5 A) In the opposite figure:

 Δ ABC , \overrightarrow{CD} bisect (\angle C) and intersect \overline{AB} in D


Prove that: BC > BD

B) In the opposite figure:

 Δ ABC right angled triangle at A H is midpoint of \overline{BC} , AH = DH

Prove that: $m(\angle BDC) = 90^{\circ}$

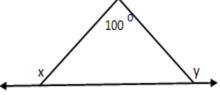
$\langle Q1 \rangle$ Choose the correct answer:

- (1) The triangle which has three axes of symmetry is
- a) scalene
- **b)** isosceles **c)** Right angled **d)** equilateral
- (2) If the lengths of two sides in an isosceles triangle are 8 cm and 4 cm then the length of the third side is cm
- a) 4

b) 8

- (3) In \triangle XYZ, m (\angle Z) = 70°, m (\angle Y) = 60° then YZXY
- a) >

b) <

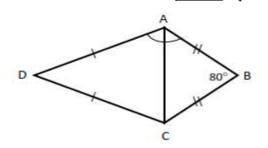

- **d)** Twice
- (4) If XA = XB and YA = YB, then \overrightarrow{XY} \overline{AB}
- a) //
- b) ⊥
- c) \equiv

- (5) If M is the point of intersection of medians of Δ ABC, D is midpoint of \overline{BC} , then AD =
- a) 2 AM

- **b)** 4 MD **c)** $\frac{2}{3}$ MD **d)** $\frac{3}{2}$ AM
- (6) The measures of exterior angle of equilateral triangle =°
- a) **60**
- b) 120
- c) 180
- d) 360

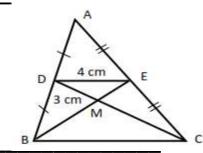
Q2> <u>Complete each of the following:</u>

- **1)** In \triangle ABC, if AB = AC, $m(\angle A) = 70^{\circ}$, then AB <
- 2) In \triangle ABC, if m (\angle A) = 30° and m (\angle B) = 90°, then BC = AC
- 3) In opposite figure:


- 4) If the measure of the vertex angle of an isosceles triangle is 80°, then the measure of each of two base angles =......
- **5)** The longest side in the right angled triangle is..........

Math questions bank

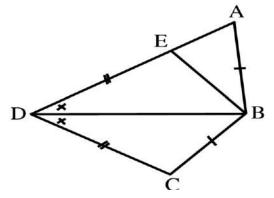
The Second grade preparatory


Q3 [A] In the opposite figure

AD = DC , AB = BC
, m (
$$\angle$$
B) = 80°, m (\angle BAD) = 114°
Find m (\angle D)

[B] In the opposite figure

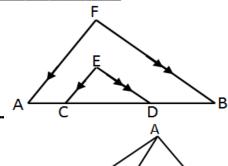
D is midpoint of \overline{AB} , E is midpoint of \overline{AC} DE = 4 cm , DM = 3 cm , BE = 6 cm Find the perimeter of Δ BMC


Q4 [A] In the opposite figure

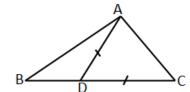
In the opposite figure

 $\begin{array}{l} {\rm BA = BC \ and \ DE = DC \ ,} \\ \overline{DB} \ {\rm bisects} \ \angle \ {\rm ADC} \end{array}$

Prove that:


 $(\angle A) + m(\angle C) = 180^{\circ}$

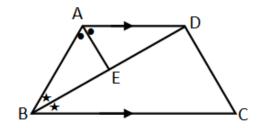
[B] In the opposite figure


 $BF > FA , \overline{ED} // \overline{FB} , \overline{FA} // \overline{EC}$

Prove that: ED > EC

Q5 [A] In the opposite figure

 \overline{AD} = DC Prove that BC > AB



[B] In the opposite figure

 $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$, $\overline{\mathrm{BD}}$ bisects \angle ABC

 \overline{AE} bisects \angle BAD

Prove that: $\overline{AE} \perp \overline{BD}$

9

Q1 Choose the correct answer:

- (1) In \triangle ABC, m(\angle A) = 3 m(\angle B), then AC......BC
- a) =

b) ≡

c) >

- d) <
- (2) The numbers 5, 4,..... can be lengths of sides of a triangle
- a) 8

b) 9

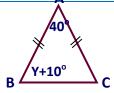
- c) 10
- d) 12

- (3) If \triangle ABC is right angled at **B**, then.....
- a) AC < AB
- b) AC > BC
- c) AB < AC
- d) BC > AC
- **(4)** If A > B, C > D, then A + C B + D
- a) >

b) =

c) <

d) ≤


(5) In the opposite figure:

Value of X =

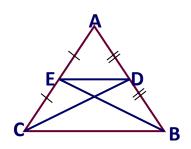
- a) 30
- b) 45
- c) 60^B
- d) 90

(6) In the opposite figure:

Value of Y =

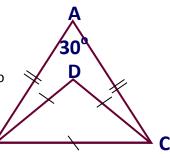
- a) 30
- b) 40
- c) 60
- d) 70

Q2> Complete each of the following:


- 1) The point of intersection of the medians of the triangle divides each of them in the ratio of From the base
- 2) The base angles of the isosceles triangle are
- 3) The longest side in the right angled triangle is
- 4) In \triangle ABC, m (\angle A) = 60°, AB = BC, then the number of axes of symmetry of \triangle ABC =...
- 5) The measure of exterior angle of the equilateral triangle is $^{\circ}$

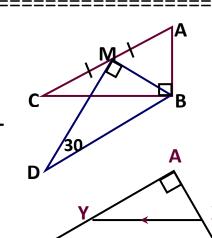
Q3 [A] In the opposite figure:

BC = 10 cm , MB = 5 cm MC = 6 cm


<u>Find</u> the perimeter of Δ EMD

[B] In the opposite figure:

AB = AC , Δ BDC is equilateral , m (\angle A) = 30 $^{\circ}$


Find by proof: $m (\angle ACD)$

(4) [A] In the opposite figure:

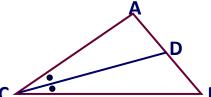
Prove that:

AC = BD

[B] In the opposite figure

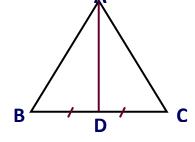
AC > AB, m ($\angle A$) = 90 $^{\circ}$

Prove that: m ($\angle AXY$) > 45°



[A] In the opposite figure:

 \overline{DC} bisect \angle ACB


Prove that: BC > BD

[B] In the opposite figure

Prove that:

Perimeter of \triangle ABC > 2 AD

10

$\langle Q1 \rangle$ Choose the correct answer:

- (1) The point of intersection of the medians of triangle divides each median in the ratio from vertex.
- a) 1:2
- b) 3:2
- c) 2:3
- (2) In \triangle ABC, if m (\angle C) = 80°, m (\angle B) = 30°. then AC BC
- a) =
- b) <

c) >

- (3) The axis of symmetry of a line segment is straight line
- a) Perpendicular to it

c) Parallel to it

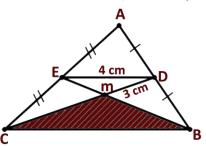
b) Bisects it

- d) Perpendicular at midpoint
- **(4)** In any triangle, XY + YZ XZ zero
- a) >
- b) <

- $d) \leq$
- (5) An isosceles triangle in which the lengths of two of its sides are 4 cm and 9 cm then the length of the third side equals
- a) 4
- b) 5

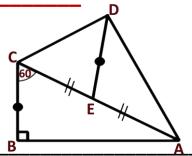
c) 9

- 13
- **(6)** If AB \cap CD = \emptyset , then AB, CD are
- a) Coincides
- b) Perpendicular c) Intersecting d) Parallel


Q2> <u>Complete each of the following:</u>

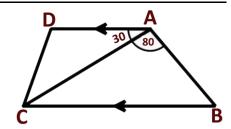
- 1) If measure of an angle of an isosceles is 60°, then the triangle.....
- 3) In \triangle XYZ, if m (\angle X) = 50°, m(\angle Y) =60°, then the triangle has Axes of symmetry
- In isosceles triangle, if the measure of one of its base angles is 40°, then the measure of its vertex
- In the opposite figure: 5)

 \triangle ABC \equiv \triangle ACD, m (\angle CAD) =


Q3> A) In the opposite figure:

D, E are midpoints of \overline{AB} , \overline{AC} respectively $\overline{BE} \cap \overline{CD} = \{m\}$. if DE = 4 cm, DM = 3 cm BE = 6cm. Find perimeter of \triangle BMC

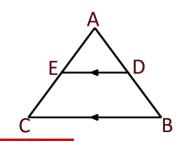
B) In the opposite figure:


M (\angle B) = 90°, m (\angle ACB) = 60° \overline{DE} is median in Δ DAC, BC = DE Prove that: m (\angle ADC) = 90°

Q4 A) In the opposite figure:

 \overline{AD} // \overline{BC} , m ($\angle BAC$) = 80°, m (\angle DAC) = 30°

Prove that: BC > AC

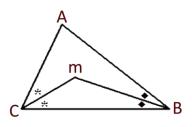

B) In the opposite figure:

Arrange ascending the measures of Δ ABC where: AC = 12 cm, BC = 13 cm, perimeter of Δ ABC = 30 cm

Q5> A) In the opposite figure:

 Δ ABC, \overline{DE} // \overline{BC} , AD = AE Prove that:

① AB = AC ② DB = EC



B) In the opposite figure:

 Δ ABC, AC > AB

 \overrightarrow{BM} bisects (\angle ABC), \overrightarrow{CM} bisects (\angle ACB)

Prove that: MC < MB

Geometry Examinations of Governorates 2012

Cairo

1/

Sharabia Educational Zone - Talale El Mostakabel Exp. Lang. School

Answer the following questions:

1 Choose the correct answer:

- - a) 1
- b) 2

c) 3

- d) nothing
- 2) In a trinagle ABC: If AC = BC and m (\angle C) = 80°, then m (\angle A) =
 - a) 80°
- b) 50°

- c) 100°
- d) 40°
- 3) \triangle XYZ, m (\angle X) = 60°, m (\angle Y) = 40°, then XZZY
 - a) <
- b) >

c) =

- d) nothing
- 4) If \overline{XE} is a median in \triangle XYZ, M is the point of interesction of its medians, then $EM = \dots XE$
 - a) $\frac{1}{2}$
- b) 2

- c) $\frac{1}{3}$
- d) $\frac{2}{3}$
- 5) \triangle ABC if m (\angle A) = 30° and m (\angle B) = 90°, then AC =
 - a) $\frac{1}{2}$ BC
- b) 2 BC
- c) 2 AB
- d) BC

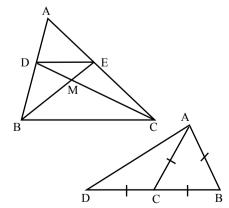
2 Complete the following:

- 1) The two base angles in an isosceles triangle are
- 2) The bisector of the vertex angle of an isosceles triangle the base and is to it.
- 3) The sum of the lengths of any two sides in a triangle is the length of the third side.
- 4) If ABC is a right-angled triangle at B, AB = 6 cm, BC = 8 cm, if \overline{BD} is a median of triangle ABC, then $BD = \dots$ cm.
- 5) In triangle ABC, if BC > AB, then m (\angle A) m (\angle C)

3 In the opposite figure:

 \overline{BE} , \overline{CD} , are medians in \triangle ABC,

MB = 6 cm., MC = 8 cm.,

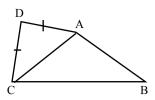

BC = 12 cm.,

Find: The perimeter of Δ MDE

4 (a) In the opposite figure:

$$AB = BC = AC = DC$$

Prove that: m (\angle BAD) = 90°

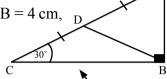


(b) In the opposite figure:

ABCD is a quadrilateral in which: AD = DC,

BC > AB

Prove that: m (/ BAD) > m (/ BAD)

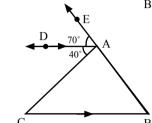


5 (a) In the opposite figure:

 $m (\angle B) = 90^{\circ}, m (\angle C) = 30^{\circ}, \overline{BD}$ is a median, AB = 4 cm, D

Complete:

 $AC = \dots cm, BD = \dots cm, AD = \dots cm.$


(b) In the opposite figure:

$$E \in \overrightarrow{BA}$$
, $\overrightarrow{AD} / / \overrightarrow{BC}$,

$$m (\angle DAE) = 70^{\circ}$$
,

$$m (\angle DAC) = 40^{\circ},$$

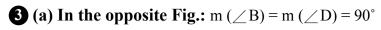
Prove that: AC > AB

Cairo

El-Nozha Educational Zone - El-Sayeda Khadiga Language School

Answer the following questions:

1 Choose the correct answer:

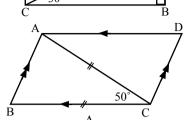

- 1) In \triangle ABC: m (\angle B) = 80°, m (\angle C) = 50°, then BCAB
 - a) >
- b) <

c) =

- d) =
- 2) The lenghts 6 cm, 7cm and can be lengths of the sides of a triangle.
 - a) 15 cm
- b) 13 cm
- c) 18 cm
- d) 11 cm
- 3) In ABC if m (\angle A) = 30° and m (\angle B) = 90° then AC =
 - a) $\frac{1}{2}$ BC
- b) 2 BC
- c) 2 AB
- d) BC
- 4) The point of intersection of the medians of the triangle divides each of them with ratio from the vertex.
 - a) 1:2
- b) 3:1
- c) 1:3
- d) 2:1
- 5) In \triangle ABC, m (\angle A) = 50° and m (\angle B) = 100° then
 - a) AB > AC
- b) AC > AB
- c) BC > AC
- d) AB = BC

2 Complete:

- 1) The measure of exterior angle of the equilateral $\Delta = \dots$ °
- 2) If \triangle ABC = \triangle XYZ, then AC \equiv
- 3) The longest side in a right-angled triangle is
- 4) The perpendicular bisector of a line segment is called
- 5) The bisector of the vertex angle of an isosceles triangle is

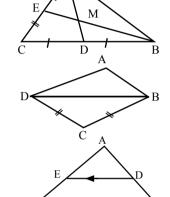

m (\angle ACB) = 30° and \overline{DE} , is a median of ADC.

If AB = 3 cm, find with proof the length to \overline{DE} .

ABCD is a paralledogram, CA = CB

and m (/ACB) = 50°. Find with proof m (/D)

4 (a) In the opposite Fig.: E and D are the midpoints


of \overline{AC} , and \overline{CB} . If AD = 4.5 cm and BM = 4 cm

Find the length of \overline{MD} and \overline{BE}

(b) In the opposite Fig. ABCD is a quadrilateral

in which AD > AB and BC = CD

Prove that: m(/ABC) > m(/ADC).

6 In the opposite Fig.

 $\overline{AC} > \overline{AB}, \overline{DE} // \overline{BC}$ Prove that AE > AD

El-Zeitoun Directorate

1 Choose the correct answer:

- - a) 3
- b) 1

c) 2

d) 4

- 2) The medians of the triangle interest at
 - b) two points
- c) 3 points
- d) 4 points
- 3) The sum of lengths of any two sides in any triangle the length of the third side.
 - a) is less than

a) one point

- b) is greater than
- c) equals
- d) otherwise
- 4) In the parallelogram, the two diagonals are
 - a) equal in length

b) perpendicular

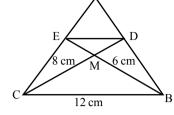
c) bisecting each other

- d) parallel
- $a) \equiv$
 - b) 上

c) <

d) >

2 Complete the following statements:

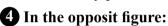

- 1) The longest side in the right-angled triangle is
- 2) The point of intersection of the medians of the traingle divides each of them with the ratio from the base.

- 3) The length of the side opposite the angle of measure 30° in the right-angled equals
- 4) The perpendicular bisector of a line sement is called

5) In the parallelogram, each two opposite sieds are

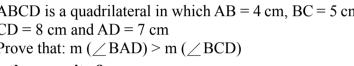
3 a) In the opposit figure:

 \overline{BE} , and \overline{CD} are two medians in \triangle ABC. MB = 6 cm. MC = 8 cm and CB = 12 cmFind the perimeter of \triangle EMD


130°

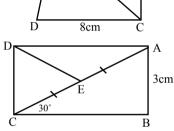
В

5cm


(b) In the opposite Figure:

$$CD = CA = AB, \in C BD$$

and $m (\angle ACD) = 130^{\circ}$
Find by proof $m (\angle BAD)$


ABCD is a quadrilateral in which AB = 4 cm, BC = 5 cm, CD = 8 cm and AD = 7 cm

Prove that: m(/BAD) > m(/BCD)

m (
$$\angle$$
ABC) = m (\angle ADC) = 90°
m (\angle ACB) = 30° and
 \overline{DE} is a median of \triangle ADC
if AB = 3cm,
Find the length of \overline{DE}

Cairo

Abdeen Educational Zone - Mohamed Fared E.L.S

1 Complete each of the following:

- a) The longest side in the right-angled triangle is
- b) If the lenghts of two sides in the isosceles triangle are 3 cm and 8 cm, then the length of the the third side = cm.
- c) The length of the side opposite to the angle whose measure = 30 in the rightangled triangle equals
- d) in \triangle XYZ: if m (\angle X) > m (\angle Y) > m (\angle Z) then> XZ >
- e) The point of intersection of the medians of a triangle divides each median by the ratio from the base.

2 Choose the correct answer:

- 1) The number of the axes of symmetry of the equilateral triangle is
 - a) 1
- b) 2

c) 3

- d) zero
- 2) In \triangle ABC: If m (\angle A) = 75°, m (\angle C) = 50°, then ACAB
 - a) >
- b) =

d) <

- 3) The sum of lengths of any two sides in the triangle the length of the third side.
 - a) >
- b) ≥

c) ≤

- 4) \overline{AD} is a median of \triangle ABC where M is the point of inter section of its median. then $AM = \dots AD$

- c) $\frac{1}{2}$
- d) 2

- 5) If \overline{AD} is a median of $\triangle ABC$, then
 - a) AB = BC
- b) BD = DC
- c) AD + BC
- d) A B = A C

3 a) In the opposite figure:

 \overline{BE} and \overline{CD} are two medians in $\triangle ABC$.

M E = 2 cm, M D = 4 cm and D E = 5 cm

Find: the perimeter of Δ M B C

A B C is a right-angled triangle at B,

D is the midpoint of \overline{AC} , m (/C) = 30° and AB = 6cm

Find the length of \overline{AC} and \overline{BD}

4 a) In the opposite figure:

$$AB = AD$$
,

BC = CD

Prove that $/ ABC \equiv / ADC$

(b) in the opposite figure:

 $\overline{AD} // \overline{BC}$, (/BAC) = 70°

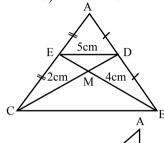
and m (\angle DAC) = 35°

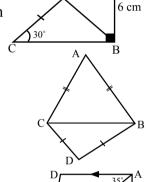
prove that: AC > BC

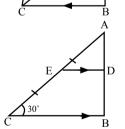
5 a) In the opposite figure:

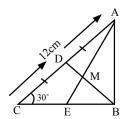
ABC is a triagle in which

AC > AB, $\overline{DE} // \overline{BC}$


prove that: AE > AD


(b) In the opposite figure:


 \triangle ABC is a right-angled triangle at B,


 \overline{AE} and \overline{BD} are medians if AC = 12 cm.

Calculate the length of each \overline{BD} and \overline{MD} .

1 Choose the correct answer:

- - a) 1

b) 2

c) 4

- d) zero
- 2) The lengths 9 cm, 4 cm and may be the lengths of isosceles triangle.
 - a) 3 cm
- b) 4 cm
- c) 5 cm
- d) 9 cm
- 3) In triangle the sum of the lengths of two sides the length of the third side.
 - a) >

b) <

c) =

- d) ≤
- 4) \triangle ABC in which m (\angle A) = 40° and m (\angle B) = 70°, then AB......AC.
 - a) >

b) =

c) **≡**

- d) <
- 5) The measure of the exterior angle of an equaillateral triangle
 - a) 30°

- b) 120°
- c) 60°
- d) 90°

2 Complete each of the following:

- a) The point of intersection of the medins of a triangle divides each median in the ratio from the vertex.
- 2) In the right- angled triangle, the longest side in it is called
- 3) In the right-angled triangle, the opposite side to angle with measure equals 30° = the length of the hypotenuse.
- 4) In an isosceles triangle, if any angle has a measure of 60°, the triangle is

3 (a) In the opposite figure:

ABC is a right-angled triangle at B,

D is the midpoint of \overline{AC} , m ($\angle A$) = 30°,

BC = 5 cm. Find: the length of \overline{BD} .

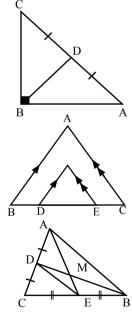
(b) in the opposite Figure:

 $D \in \overline{BC}$, $E \in \overline{BC}$, $\overline{AB} / / \overline{FD}$

and \overline{AC} , \overline{FE} , if AB = AC. prove that:

FDE is an isosceles triangle.

4 (a) In the opposite figure:

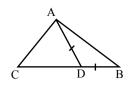

 \triangle ABC in which D and E midpoint of \overline{AC} , \overline{BC}

$$\overline{AE} \cap \overline{BD} = \{M\}$$

AB = 12cm, AE = 9cm, BM = 8cm

Calculate the perimeter of Δ DME

(b) \triangle XYZ in which XY = 8 cm, YZ= 10 cm and ZX = 7cm. Ordere the measures of its angles ascendingly.



5 In the opposite figure:

ABC is a triangle in which, BC > AB

 $D \in \overline{BC}$ such that AD = BD.

Prove that: (/BAC) is an obtuse angle.

Cairo 6

Al Salam Education Zone - Anwer Alsadat EXp. Lang. School

1 Choose the correct answer:

- 1) Number of axes of symmetry of an equilateral triangle is
 - a) 0

b) 1

c) 2

- d) 3
- 2) An isosceles triangle, one of its base angles has masure 50°, then the measure of the vertex angle =
 - a) 50°

- b) 60°
- c) 70°
- d) 80°
- 3) \overline{AD} is an median of triangle ABC, and M is the point of intersection of the medians, then AM =AD.
 - a) $\frac{1}{3}$

- b) $\frac{2}{3}$
- c) $\frac{1}{2}$
- d) $\frac{1}{4}$
- 4) If the lengths of two sides of a triangle are 4 cm and 8 cm., then the length of the third side =cm.
 - a) 3

b) 4

c) 8

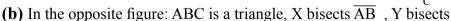
- d) 12
- 5) In a triangle ABC: if m (\angle A) = 80°, m (\angle C) = 60°, then ABBC.
 - a) >

b) <

c) =

d) ≥

2 Complete:

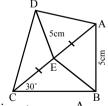

- 1) If XYZ is a right-angled triangle at Y, then the longest side is
- 2) The sum of measures of any two consecutive angles in the parallelogram =
- 3) The straight line perpendicular to the midpoint of a line semgment is called
- 4) The bisectors of the vertex angle an isoseles triangle and

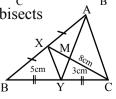
3 a) In the opposite figure:

ABC is a right-angled triangle at B, m (\angle ACB) = 30°

, AB = 5 cm. Point E bisects \overline{AC} if DE = 5 cm

, then prove that m (\angle ADC) = 90°


 \overline{BC} , XY = 5 cm, $\overline{XC} \cap \overline{AY} = \{M\}$ where:

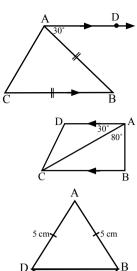

CM = 8 cm, Ym = 3 cm. Find with proof

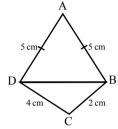
the lenght of : 1) \overline{AM}

 $2) \overline{MX}$

 $3)\overline{AC}$

4 a) In the opposite figure:


ABC is a triangle in which AC = BC, \overrightarrow{AD} // \overrightarrow{BC} , m (/DAC) = 30°. Find the measures of the angles in \triangle ABC


(b) In the opposite figure:

$$\overrightarrow{AD}$$
 // \overrightarrow{BC} , m ($\angle BAC$) = 80°, m ($\angle DAC$) = 30°
Prove thath: BC > AB

5 In the opposite figure:

ABCD is a quadrilateral in which
$$AB = AD = 5cm$$
, $BC = 2 cm$, $DC = 4 cm$ Prove that:
 $m(/ABC) > m(/ADC)$

Cairo

Ain Shams Administration - Helmiat Al Zaiton - Helmiat Al Zaiton Extinguished Exp. School

1 Complete the following:

- 2) The base angles of the isosceles triangle are
- 3) In a triangle, the smallest angle in measure is opposite to
- 4) The medians of a triangle are
- 5) If the angles of a triangle are congruent, then the triangle is

2 Choose the correct answer:

- 1) In \triangle ABC: if m (\angle A) = 60°, m (\angle B) = 40°, then the longest side in length is $(\overline{AB}, \overline{CA}, \overline{BC}, \text{hypotenuse})$
- 2) In the \triangle ABC if XY = YZ, m(\angle Z) = 50° then the m(\angle X) =

(50°, 80°, 130°, 100°)

- 3) \triangle ABC if right-angle triangle at B, if m (\angle A) = 30°, BC = 10 cm, then AC= (5 cm, 10 cm, 20 cm, 15 cm)
- 4) The measure of exterior angle of an equilateral triangle =

 $(30^{\circ}, 60^{\circ}, 120^{\circ}, 90^{\circ})$

5) If the lengths of two sides in an isosecles triangle were: 3 cm, 7 cm, then the length of the third side = (3 cm - 7 cm - 4 cm - 5 cm)

3 (a) In the opposite figure:

ABC is a triangle in which \overline{BD} bisects \angle ABC and intersects, \overline{AC} at D, \overline{DE} // \overline{CB} \overline{DE} // \overline{AB} = {E}

Prove that BE = ED

(b) In the opposite figure:

XYZL is quadrilateral in which

$$XY = ZL = ZX = XY$$
, m ($\angle ZXL$) = 90°

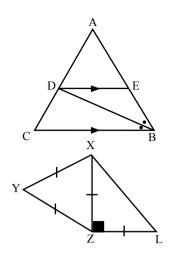
find the m ($\angle XLZ$), m ($\angle LXY$)

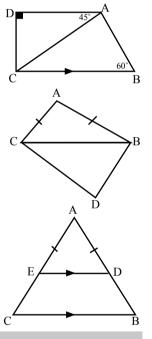
$$\overline{AD}$$
 // \overline{BC} , m ($\angle D$) = 90°, m ($\angle B$) = 60°,
m ($\angle DAC$) = 45°

First: Prove that. AC \(\subseteq BC \)

Second: Prove that Δ DAC is an isosceles triangle.

5 (a) In the opposite figure:


$$AB = AC, DC > DB$$


Prove that: $m (\angle ABD) > m (\angle ACD)$

(b) In the opposite figure:

$$\overline{DE} // \overline{BC}$$
, $AD = AE$

Prove that: AB = AC.

Giza

Giza Governorate - Omrania zone - El-Sadat E.L.S

1 Choose the correct answer from those between parentheses:

- 1) If \overline{AD} is a median of \triangle ABC and M is the point of intersection of the medians then AM =AD. $(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}, \frac{1}{4})$
- 2) If \triangle ABC , m (A) = 80° , m(C°) = 70° then ABBC.

$$(>,<,\equiv,\geqslant)$$

3) If the lengths of two sides of triangle are 3,7 then the length of 3^{rd} side is (3, 4, 8, 10)

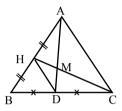
4) \triangle ABC, m (/A) = 30° m (/B) = 90° then AC =

 $(\frac{1}{2}BC, 2BC, 2AB, BC)$

5) In the isosceles triangle if one of its base angle of measure 40° then its vertx angle is of (40°,80°,100°,60°)

2 Complete the following:

- 1) The measure of the exterior angle of the equilateral triangle is°
- 2) The longest side in the right angled triangle is
- 4) The bisector of the vertex angle of an isosceles triangle bisects the base and is
- 5) The medians of triangle are


3 In the opposite figure:

D midpoint of \overline{BE} , H is a midpoint

of
$$\overline{AB}$$
, $\overline{AD} \cap \overline{CH} = \{M\}$

AD = 9 cm

AC = 12 cm, CM = 10 cm, find perimeter of Δ MDH

4 (a) In the opposite figure:

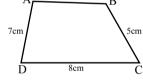
ABCD is quadrilateral


AB = 4 cm

$$BC = 5$$
 cm

CD = 8 cm

AD = 7 cm

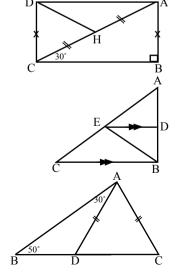

Prove that: m(/BAD) > m(/BCD).

(b) m (/B) = 90° m (/ACB) = 30° .

AB = DH, H is midpoint of \overline{AC}

Prove that m (\angle ADC) = 90°.

5 (a) In the opposite figure:


 \overline{ED} // \overline{BC} and \overline{BE} bisects / ABC

Prove that: Λ DBE is an isosceles Λ

$$AC = AD, m (/DAB) = 30^{\circ}m (/B) = 50^{\circ}$$

Find m (/DAC)

1 Choose the correct answer from the given ones:

- 1) The area of rhombus whose diagon is lengths 6 cm, $8 \text{cm} = \dots \text{cm}^2$
 - a) 48

b) 24

c) 14

- 2) In \triangle ABC, if $(AC)^2 = (AB)^2 + (BC)^2$, then \angle B is angle.
 - a) right
- b) obtuse
- c) acute
- d) straight
- 3) 1) The number of axes of summetry in the equilateral traingle =
 - a) 1

b) 2

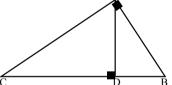
- d) nothing
- 4) If the area of a parallelogrm is 35 cm² and its height is 5 cm, then the length of the corresponding base iscm.
 - a) 5

b) 7

c) 9

- d) 20
- 5) A square with perimeter 16 cm/ then its area = \dots cm²

- b) 40
- c) 16

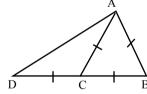

d) 20

2 Complete each of the following:

- 2) The two triangles are similar if the correspoding are proportional.
- 3) If the lenghts of two parallel bases in a trapezium are 8 cm and 10 cm and its height is 6 cm then its area = \dots cm²
- 4) In the opposite figure:

 \triangle ABC is right - angled at A and $\overline{AD} \perp \overline{BC}$ then

 $(AB)^2 = \times ...$

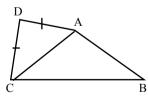


5) Two triangles which have the same base and the vertices opposite this base on a straight line parallel to the base

3 (a) In the opposite figure:

AB = BC = AC = DC

Prove that: m (/ BAD) = 90°

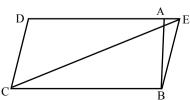


(b) In the opposite figure:

ABCD is a quadrilateral in which: AD = DC,

BC > AB

Prove that: m (/ BAD) > m (/ BAD)



4 (a) In the opposite figure:

 $F \in \overline{DA}$ if the area of the parallelogram

 $ABCD = 40 \text{ cm}^2$

Find area of Δ FBC

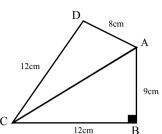
(b) In the opposite figure:

$$\overline{AD} // \overline{BC}$$
, $\overline{AC} \cap \overline{DB} = \{M\}$

Prove that

The area of \triangle AMB = the area of \triangle DMC

D


5 In the opposite figure:

$$m (\angle B) = 90^{\circ}$$
, $AB = 9cm$

BC = 12 cm. CD = 17 cm

And AD = 8 cm

- 1) Find the length of \overline{AC}
- 2) Prove that: $m (/DAC) = 90^{\circ}$

Giza

Dokki Directorate - Gamal Abd El-Nasser Exp.L.S.

1 Choose the correct answer from the given ones:

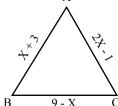
- - a) zero
- b) 1

c) 2

- d) 3
- 2) In a parallelogram ABCD if m (/A) = 70°, then m (/B)=
 - a) 70°

- b) 90°
- c) 110°
- d) 20°
- 3) \triangle ABC: if m (\angle A) = 30°, m (\angle B) = 90°, then BC =
 - a) $\frac{1}{2}$ AB
- b) $\frac{1}{2}$ AC
- c) 2AB
- d) 2AC
- 4) Each of the base angles of the isosceles triangle is angle.
 - a) acute
- b) right
- c) obtuse
- d) striaght

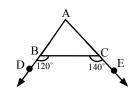
- 5) \triangle ABC : m (/B) = 70°, m (/C) = 30° then
 - a) BC > AB
- b) AB > BC c) AC > BC d) AB > AC


2 Complete:

- 1) The perpendicular to a line segment from its mid-point is called for that line segment.
- 2) The median of an isosceles triangle drawn from the vertex bisects
- 3) \triangle ABC, if AB = 5 cm and BC = 7 cm, then AC \in].....
- 4) The longest side in the right angled triangle is
- 5) \triangle ABC: m (/B) = 40°, m (/C) = 80° then the number of axes of symmetry of \triangle ABC =

3 A- In the opposite figure:

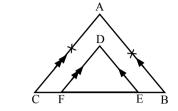
 \triangle ABC, in which m (/B) = m (/C)


Find: The perimeter of \triangle ABC.

B- In the opposite figure:

$$M (\angle DBC) = 120^{\circ}$$

, $m (\angle ECB) = 140^{\circ}$

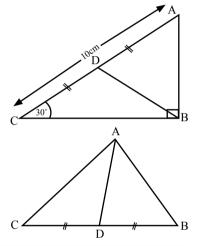

Prove that CB > AB

4 In the opposite figure:

$$AB = AC, \overline{BE} // \overline{AB}$$

, $\overline{DF} // \overline{AC}$

Prove that DE = DF



5 A- In the opposite figure:

$$\triangle$$
 ABC in which: m (\angle B) = 90°
, m (\angle C) = 30°, D is the mid-point of \overline{AC}
, AC = 10cm. **Find** the perimeter of \triangle ABD
Prove that m (\angle B) > m (\angle C)

B- In the opposite figure:

Perimeter of
$$\angle$$
ADC > perimeter of ADB
, BD = DC
Prove that m (\angle B) > m (\angle C)

Alexandria

Mid Educational Zone - El Orwa Exp.school for Boys

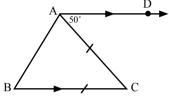
1 Complete the following:

- a)The vertex angle bisector in the isosceles triangle
- b) \overline{AD} is a median of Δ ABC , M is the point of concurrence, then AM:AD = :
- c) Any point on the axis of symmetry of a line segment is at two equal distances from.....
- d) In any triangle: The sum of the lengths of any two sides is the length of the third side.
- e) ABCD is a parallelogram, m (\angle A) = (3x + 4)°, m (\angle B) = 5x°, then m (\angle C) =°

2 Choose the correct answer from the given ones:

 b) Triangle ABC in which AB> AC, then m (\angle B) m (\angle C) [>,<, \geqslant ,=]

c) An isosceles triangle the lengths of two sides: 4 cm and 8 cm, then the length of the third side iscm. (3, 4, 13, 8)

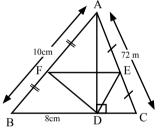

d) \triangle ABC, AB = AC, m (\angle B) = (2x + 13)°, m (\angle C) = (3x - 17)°, then m (\angle A) =° (34°,43°,73°,30°)

e) \triangle ABC : if m (\angle A) = 30°, m (\angle B) = 90°, then BC =

$$(\frac{1}{2}AB, \frac{1}{2}AC, 2AB, 2AC)$$

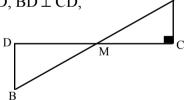
3 A- In the opposite figure \overrightarrow{DA} // \overrightarrow{BC} , AC = BC, m ($\angle DAC$) = 50°

Find: m (/ABC).

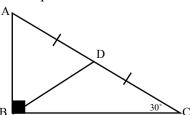

B- ABCD is a quadrilateral in which, AB = 6 cm. BC = 4 cm, CD = 8 cm, DA = 7cm

Prove that: $m (\angle ABC) > m (\angle ADC)$.

4 In the opposite figure E, F are the midpoints of \overline{AB} , \overline{AC}


in \triangle ABC, $\overline{AD} \perp \overline{BC}$, AB = 10 cm, BC = 8cm, AC = 7cm.

Find: the perimeter of triangle DEF


5 a) In the opposite figure $\overline{AB} \cap \overline{CD} = \{M\}, \overline{AC} \perp \overline{CD}, \overline{BD} \perp \overline{CD},$

Prove that AB>CD

b) In the opposite figure \overline{BD} is the median of the right angled triangled ABC, AC = 6cm, m (\angle C) = 30°

Prove that \triangle ABD is an equilateral triangle and find its perimeter.

1 Complete:

- 1) In any triangle the greatest angle in measure is opposite to
- 2) The number of axes of symmetry in the isosceles triangle =
- 3) The intersection point of the medians of a triangle divides each other from direction of the base in the ratio
- 4) The medians of an isosceles triangle from the vertex angle

2 Choose the correct answer:

- 1) \triangle ABC if m (/B) = 70°, m (/C) = 60° then BCAB
 - a) <

b) >

c) ≤

- d) ≥
- 2) The sum of lengths of any two sides in a triangle is the length of the third side.
 - a) <

b) >

c) ≤

- d) 2
- 3) In the right-angled triangle, the length of the median from the vertex of the right angle = the length of the hypotenuse.
 - a) $\frac{1}{3}$

- b) $\frac{1}{2}$
- c) $\frac{1}{4}$

- d) 2
- 4) In \triangle ABC: if AD = 9 cm is a median and M is the point of concurrency, then DM =cm.
 - a) 6

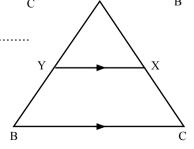
b) 3

- c) 4.5
- d) 4
- 5) In \triangle ABC is the right-angled triangle at B m (\angle A) = 30° and BC = 4 cm then AC =cm.
 - a) 4

b) 8

c) 2

- d) 12
- 3 In the opposite figure: \triangle ABC, AC = 8 cm, m (\angle BAC) = 60°,


m (\angle ABC) = 90°, D is the midpoint of \overline{AC} .

Find: the perimeter of \triangle ABD

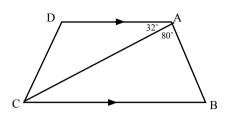
4 Complete:

- a) The base angles of the isosceles triangle are
- b) In the opposite figure: ABC is a triangle in which AB = AC , \overline{XY} // \overline{BC}

Prove that AXY is an isosceles triangle.

5 Complete:

a) In a triangle, if two sides have unequal lengths,


.....

b) In the opposite figure \overline{AD} // \overline{BC} ,

$$m (\angle BAC) = 80^{\circ}, m (\angle CAD) = 32^{\circ}$$

Prove that:

BC > AB

Gharbia

13

Samanoud Educational Directorate

Answer the following questions:

(I)	Choose the	correct a	nswer f	rom th	ie given	ones:

- 1) Number of axes of symmetry of the equilateral triangle =
 - a) 1

b) 2

c) 3

- d) 4
- 2) The base angles of the isosceles triangle are
 - a) congruent
- b) alternate
- c) corresponding
- d

supplementary

- 3) The length of the side opposite to the angle whose measure is 30° in the right-angled triangle = the length of the hypotenuse.
 - a) quarter
- b) half
- c) third
- d) twice
- - a) \overline{AB}

- b) \overline{BC}
- $c)\overline{AC}$

d) \overline{XY}

5) In the triangle ABC, if BC = 9 cm = 7 cm, then

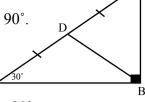
 $m (\angle C) \dots m (\angle A)$

a) =

b) ≥

c) >

d) <

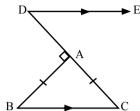

2 Complete each of the following:

- a) The medians of any triangle intersect at
- b) Any point on the axis of the line segment is from its terminals.
- c) The length of the median from the vertex of the right angle in the right-angled in the right-angled triangle equals
- d) In any triangle, if two angles are unequal in measure, then the greater angle is opposite to
- e) The measure of the exterior angle of the equilateral triangle =°

3 In the opposite figure:

AC = 8 cm, D is mid of \overline{AC} , m ($\angle C$) = 30° and m ($\angle B$) = 90°.

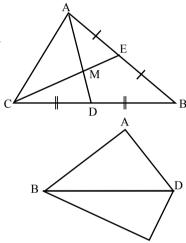
Find the perimeter of the triangle ABD.


4 a) ABC is a triangle in which m ($\angle A$) = 50° and m ($\angle C$) = 80°.

Prove that the triangle ABC is an isosceles triangle.

$$\overline{BA} \perp \overline{CD}, \overline{BC} / / \overline{DE}$$

AB = AC. Find m (/CDE).



5 a) In the opposite figure:

E is mid of \overline{AB} . D is mid of \overline{BC} , $\overline{AD} \cap \overline{CE} = \{M\}$

MC = 5 cm. and MD = 2 cm.

Find the length of each of \overline{AD} and \overline{ME}

b) In the opposite figure:

$$AB = 7 \text{ cm}$$
, $BC = 8 \text{ cm}$.

AD = 5cm. and DC = 3 cm.

Prove that: $m (\angle ADC) > m (\angle ABC)$

Dakahlia

14

Dakahlia Educational Directorate

① Complete:

- 1) The bisector of vertex angle of isosceles triangle is
- 2) In \triangle XYZ: if m (\angle X) = 75°, m (\angle y) = 25° then the longest side in length is
- 3) If the point $D \in$ the axis of symmetry of \overline{BC} .

Then DB =

4) If ABC is a right angled triangle at B, and AB = $\frac{1}{2}$ AC

Then m $(\angle A) = \dots^{\circ}$

5) XYZ is a triangle, if XY = 3 cm, YZ = 5 cm

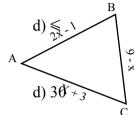
then $XZ \in].....[$

2 Choose:

- 1) The number of axes of symmetry in the equilateral triangle =
 - a) 2

b) 1

c) 0

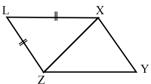

- d) 3
- 2) In \triangle ABC: If AB = AC, m (/C) = 50° then m (/A) =
 - a) 80°

- b) 40°
- c) 100°
- d) 50°
- 3) The point of concurrence of the medians of the triangle divides each median in the ratio of from the vertex.
 - a) 1:3
- b) 3 · 1
- c) 1:2
- d) 2:1
- 4) In \triangle ABC: If BC > AB, Then m (\angle A) m (\angle C)
 - a) =

b) <

- c) >
- 5) ABCD is a parallelogram, AB = 3 cm. BC = 5 cm, Then its perimeter =cm
 - a) 8

- b) 16
- c) 15

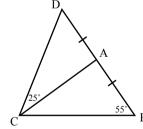

3 a) In the opposite figure:

ABC is a triangle, $m (\angle B) = m (\angle C)$ Find the perimeter of the triangle ABC.

b) In the opposite figure:

$$LX = LZ, YZ > YX$$

Prove that: $m (\angle YXL) > m (\angle YZL)$



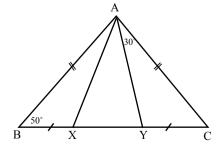
- **4** a) ABC is a triangle in which AB = $\frac{1}{2}$ BC = 3.5 cm, and AC = 8 cm, Order the measure of its angles ascendingly.
 - b) In the opposite figure:

$$AB = AC$$
, $m (\angle ABC) = 55$

$$m (\angle ACD) = 25 \text{ and } D \in \overrightarrow{BA}$$

Prove that: AB > AD

5 In the figure:


ABC is a triangle in which

$$AB = AC$$
, $BX = CY$

If m (
$$\angle$$
B) = 50°, m (\angle CAY) = 30°

Prove that: 1) AYX is isosceles Δ

2) Find m ($\angle AXY$)

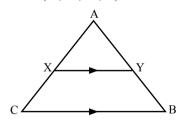
1 Complete:

- a) The point of intersection o the medians in a triangle divides each median by the ratio from the base.
- b) The bisector of the vertex angle of an isosceles triangle is to the base and

$$\triangle$$
 ABC, m (\angle B) = 90°, m (\angle C) = 30°
if AC = 10 cm .Then AB =cm

- d) The longest side in the right-angled triangle is
- e) The measure of the exterior angle of equilateral triangle =°

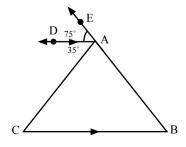
2 Choose the correct answer:


- a) In a triangle ABC , if AB = AC and m (\angle A) = 40° then m (\angle C) = (40°, 70°, 140°, 50°)
- c) In \triangle ABC: If m (\angle B) = 70°, m (\angle A) = 50° then ABBC (>,<,=, \equiv)
- d) In the \triangle XYZ, if XY > ZX, then m (\angle Y)m (\angle Z) (> , < , = , \equiv)
- e) The number of axes of symmetry of isosceles triangle is

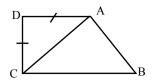
(1,0,3,4)

3 In the opposite figure:

ABC is a triangle in which AB = AC $\overline{ABC} = \overline{ABC}$


 \overline{XY} // \overline{BC} , prove that ΔAXY is an isosceles triangle

4 a) In the opposite figure:


ABC is atriangle, $E \in \overrightarrow{BA}$ $\overrightarrow{AD} // \overrightarrow{BC}$, $m (\angle CAD) = 35^{\circ}$ $m (\angle DAE) = 75^{\circ}$

Prove that AC > AB

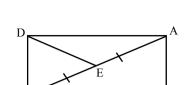
b) In the opposite figure:

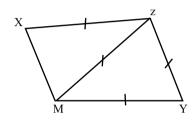
ABCD is a quadrilateral in which AD = DC, BC > AB m(/BAD) > m(/BAD)

5 a) In the opposite figure:

m (
$$\angle$$
ABC) = m (\angle ADC) = 90°
m (\angle ACB) = 30° and
 \overline{DE} is a median of \triangle ADC,

 $\overline{AB} = 3 \text{ cm}$


Find, the length of \overline{DE}


b) In the opposite figure:

$$ZY = YM = MZ = ZX$$

$$m (/ZMX) = 50^{\circ}$$

Find m (/YZX)

Domiette

16

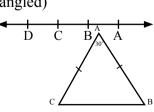
Damietta Educational Directorate

1 Choose the correct answer:

a) The number of axis of symmetry of isosceles triangle

b) If the length of two sides of an isosceles triangle 3cm, 7 cm then the length of the third side = cm.

- c) In the opposite figure ABC is right angled triangle at B,
- \overline{BD} is median m ($\angle C$) = 30° then A B D is triangle. (equilateral, isosceles, scalene, right angled)
- d) In the opposite figure

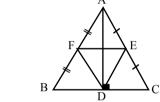

$$C, D \in \overrightarrow{AB} \text{ if } A B > C D \text{ then } A C \dots B D.$$

$$\left(>\,,<\,,\equiv\,,\equiv\right)$$

e) In the opposite figure Δ A B C, AB = AC

$$m (\angle A) = 50^{\circ} \text{ then } m (\angle B) \dots^{\circ}$$

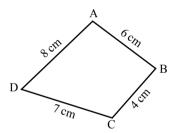
$$(50^{\circ}, 130^{\circ}, 65^{\circ}, 60^{\circ})$$


D

- 2 Complete to form a correct statement:
 - a) The measure of an exterior angle of an equilateral triangle =
 - b) The point of median of triangle divides each median in ratio from base.

 - d) In a triangle the smallest angle in measure opposite
- 3 In the opposite figure A B C D is parallelogram find in proof.
 - 1) m (/A)
 - 2) Perimeter of the ABCD.
- **4** a) ABC is a triangle in which m (\angle A) = 40°, m (\angle B) = 75° order the lengths of sides of \triangle ABC in ascending order.:

ABC is triangle in which AB = 16cm, AC = 18cm, BC = 20cm, E is midpoint \overline{AC} , F is midpoint \overline{AB} and $\overline{AD} \perp \overline{BC}$ find the perimeter of Δ DEF.


5 a) In the opposite figure:

ABCD is quadrialteral in which

$$AB = 6cm$$
, $BC = 4cm$, $CD = 7cm$

, DA = 8 cm prove that

m(/BCD) > m(/BAD)

b) In the opposite figure:

ABC is an isosceles triangle in which BD = EC

 $AB = AC, D \in \overline{BC}, E \in \overline{BC}$ prove that

- 1) \triangle ADE is isosceles,
- $2) \angle ADE = \angle AED$

Port Said

South Educational Directorate

- **1** Choose the correct answer:
 - 1) The point of concurrence of the medians of the triangle divides each median in the ratio of from its base.
 - a) 2:1
- b) 1:2
- c) 2:3
- d) 3 : 2

2) In the opposite figure N° =

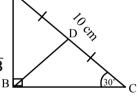
c) 10 cm, 6 cm, 4cm

- a) 42
- b) 48
- c) 138
- d) 96
- 3) Which of the following groups are valid in drawing a triangle?
- a) 5 cm, 7 cm, 8 cm b) 4 cm, 9 cm, 3 cm
- angled triangle equals half the length of the hypotenuse.

d) 8 cm, 3 cm, 4 cm

- a) 30
- b) 40
- c) 60
- d) 45
- 5) If the triangle is equilateral, then it is equiangular where each angle of measure ='
 - a) 30
- b) 45
- c) 60
- d) 90

2 Complete:


- 1) In the right-angled triangle, the is the longest side.
- 2) The medians of a triangle intersect in
- 3) If: x>y, z is a positive number then: xz>.....
- 4) The interval which the third side of a triangle belongs to if the lengths of the other two sidies were 6 cm, 9 cm is
- 5) The number of symmetrical axes in the equilater triangle is
- **3** A) In the opposite figure:

ABC is a right- angled triangle is B,

D is a midpoint of \overline{AC} , m (/C) = 30°, AC = 10 cm

Find: 1) the length of \overline{BD}

2) the length of \overline{AB}

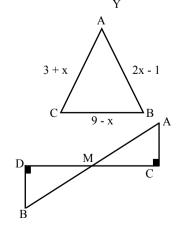
3) the perimeter of \triangle ABD

b) In the opposite figure:

$$XY = XL$$
, $ZY = ZL$, $LM = YM$

Prove that X, M and Z are on the same straight line

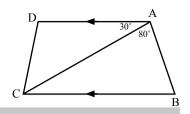
4 A) In the opposite figure:


ABC is a triangle which m(/B) = m(/C)

Find: the perimeter of the triangle.

b) In the opposite figure:

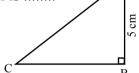
$$\overline{AB} \cap \overline{CD} = \{M\}, \overline{AC} \perp \overline{CD}, \overline{BD} \perp \overline{CD}$$


Prove that: AB > CD

5 In the opposite figure:

$$\overrightarrow{AD}$$
 // \overrightarrow{BC} , m ($\angle BAC$) = 80°, m ($\angle DAC$) = 30°.

Prove that: BC > AB


Ismailia

18

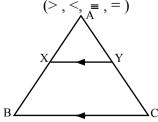
Directorate of Education - Elmanar Language School

① Complete:

- a) The base angles of an isosceles triangle are
- 2) The number of the axes of symmetry in an equilateral triangle is
- 3) In the right-angled triangle the length of the median from the vertex of the right angle equals the length of the hypotenuse.
- 4) In \triangle ABC, if m (\angle A) = 100° then the greatest side length is
- 5) By using the opposite figure AC =cm

2 Choose the correct answer:

- 1) The intersection point of the medians of a triangle divides each of them at the ratio: from the base. (1:2,2:1,1:4,1:3)
- 2) In The isosceles triangle if the measure of one of the two base angles = 50° then the measure of the vertex angle =(50° , 100° , 80° , 130°)
- 3) The length of two sides of an isosceles triangle are 4 cm, 9 cm then the length of the third side =cm (4,8,7,9)
- 4) The measure of the exterior angle of an equilateral triangle =


(60°, 80°, 120°, 130°)

3 In the opposite figure:

ABC is a triangle where

$$AB > AC$$
, $\overline{XY} // \overline{BC}$

Prove that: $m(\angle AYX) > m(\angle AXY)$

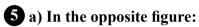
4 a) In the opposite figure:

If D is the midpoint of \overline{AB} .

E is the midpoint of \overline{AC}

and
$$\overline{BE} \cap \overline{DC} = \{M\}$$

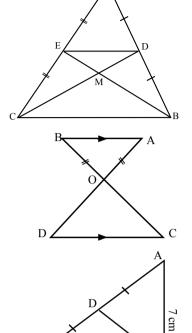
If DE = 4 cm, DM = 3 cm and ME = 2 cm


Find the perimeter of Δ BMC .

$$\overline{AB} // \overline{DC}$$
, $\overline{AD} \cap \overline{BC} = \{0\}$

and
$$OA = OB$$

Prove that: \triangle ODC is an isosceles triangle.

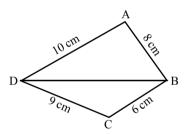


ABC is a right angled triangle at B.

D is a midpoint of \overline{AC}

$$m (/C) = 30^{\circ}, AB = 7cm$$

Find with proof: 1) length of \overline{AC} . 2) length of \overline{BD}_C


b) In the opposite figure:

ABCD is a quadrilateral in which

$$AB = 8 \text{ cm}$$
, $BC = 6 \text{ cm}$

$$CD = 9 \text{ cm} \text{ and } DA = 10 \text{ cm}$$

Prove that: $m (\angle ABC) > m (\angle ADC)$.

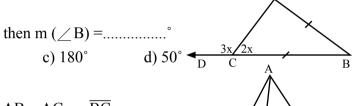
Suez

19

Port Tawfeek Educational Directorate

1 Complete:

- 1) \triangle ABC in which AB = 3 cm, BC = 5 cm, then AC \in].....,[
- 2) The two base angles of the isosceles triangle are
- 3) The side opposite to the angle of measure 30° in the right angled triangle equals the hypotenuse.
- 4) The bisector of the vertex angle in an isosceles triangle of
- 5) If the point A lies on the axis of symmetry of \overline{xy} , then:


2 Choose the correct answer:

- 1) In \triangle ABC, If BC > AB, then m (\angle A) m (\angle C)
 - a) >
- b) <
- c) =
- 2) The medians of the triangle intersect at one point ,this point divides each in the ratio from the base.
 - a) 2:1
- b) 1:2
- c) 3:4
- d) 1:1
- 3) In isosceles triangle if one of its angles is 60°, then it has axes of symmetry.
 - a) 1
- b) 2
- c) 3
- d) an infinite
- 4) In \triangle ABC, then AB + AC BC >
 - a) 2
- b) 1
- c) zero
- d) otherwise

5) In the opposite figure:

If
$$D \in \overrightarrow{BC}$$
, $\overrightarrow{AB} = \overrightarrow{BC}$, then $m (\angle B) = \dots$

- a) 36°
- b) 72°

3 In the opposite figure:

ABC is isosceles triangle, AB = AC, $\in \overline{BC}$ Then prove that: AB > AD

4 a) In the opposite figure:

 \overline{AD} // \overline{BC} , m (/DAC) = 30°, m (/BAC) = 80° Then prove that: BC > AB

b) In the opposite figure:

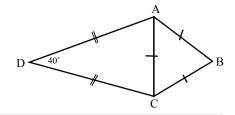
Complete:

- 1) AC= cm
- 2) DE = cm
- **5** a) In the opposite figure:

AB = 5 cm, BC = 7 cm, CD = 9 cm

And AD = 8 cm, then

Prove that: m (/ BAD) > m (/ BCD)



3 cm

b) In the opposite figure:

$$AB = BC = AC, m (/D) = 40^{\circ}$$

And = DC, then find m (
$$\angle$$
BCD)

Fayoum

20

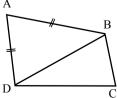
Fayoum East Directorate - Islamic Language School - Nafessa Elhosray

1 Choose the correct answer:

- 1) The numbers 7, 3 and can be lengths of sides of an isosceles triangle.
 - a) 3
- b) 7
- c) 8

- d) 4
- 2) The number of axes of symmetry of the equilateral triangle is
 - a) 1
- b) 2
- c) 3
- d) zero
- 3) In \triangle ABC: if m (\angle A) = 70°, m (\angle B) = 50°, then ABBC.
 - a) >
- b) <
- c) ≤
- d) =
- 4) In \triangle XYZ: if XY = ZY m (\angle Y) = 80°, then m (\angle X) =
 - a) 80°
- b) 50°
- c) 100°
- d) 40°
- 5) If the length of median drawn from a vertex of triangle equals half the length of the opposite side to this vertex then the vertex angle is
 - a) acute
- b) obtuse
- c) right
- d) reflex

2 Complete:


- 1) The longest side in the right-angled triangle is
- 3) In \triangle ABC: if AB>AC, then m (\angle B) m (\angle C).
- 4) In the right-angled triangle the length of the side opposite to angle with measure 30° equals the length of the hypotenuse.
- 5) The point of intersection of the medians of a triangle divides each median in the ratio from the vertex.
- 3 a) Draw the line segment \overline{AB} with length 7cm. Using a compass and the ruler to draw the axis of symmetry of \overline{AB} . "Don't remove the arcs"

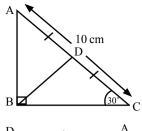
b) In the opposite figure:

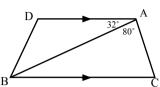
ABCD is a quadrilateral in which

$$AB = AD$$
, $DC > BC$

Prove that: $m (\angle ABC) > m (\angle ADC)$

4 a) In the opposite figure:


ABC is a right-angled triangle at B, m (\angle C) = 30° D is a midpoint of \overline{AC} , AC = 10 cm.


Find the length of \overline{AB} , \overline{BD}

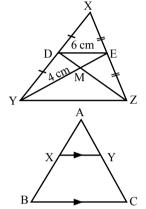
b) In the opposite figure:

$$\overline{AD} // \overline{BC}$$
, m ($\angle BAC$) = 80°, m ($\angle BAC$) = 32°

Prove that: BC > AB

5 a) In the opposite figure:

D is the midpoint of \overline{XY} , E is the midpoint of \overline{XZ} ,


$$\overline{\text{YE}} \cap \overline{\text{ZD}} = \{M\}$$
, $\text{YE} = 9 \text{ cm}$, $\text{DM} = 4 \text{ cm}$., $\text{DE} = 6 \text{ cm}$.

Find the perimeter of Δ YMZ.

b) In the opposite figure:

$$\overline{BC} // \overline{XY}, AB = AC$$

Prove that: \triangle AXY is an isosceles triangle.

Beni Suef 21

Nasser Educational Department - Nasser Experimental Language School

1 Choose the correct answer:

- 1) If the lengths of two sides in a triangle are 3 cm, 7 cm, then the length of the third side may be
 - a) 3
- b) 4
- c) 6

- d) 10
- 2) The triangle ABC is obtuse-angled triangle at B, then the longest side is
 - a) AB
- b) BC
- c) AC
- d) AD
- 3) In the isosceles triangle if one of its base angles is of measure 40°, then its vertex angles is of measure
 - a) 40°
- b) 80°
- c) 100°
- d) 60°
- 4) The measure of exterior angle in an equilateral triangle
 - a) 60°
- b) 70°
- c) 80°
- d) 120°

5) In a triangle ABC: $m (/B) = 75^{\circ}$, $m (/C) = 50^{\circ}$, then BC AB b) >c) =d) =

2 Complete the following: 1) The points of concurrence of the medians of the triangle divides each median in the ratio from the base.

2) Any point at the axis of the line of symmetry is at two equal distances from

3) The length of side opposite to the angle whose measure = 30° in the rightangled triangle =

4) In the right-angled triangle the length of the median from the vertex of the right angle equal the legnth of the hypotenuse.

5) In triangle ABC, if $m(/A) = 70^{\circ}$, $m(/B) = 30^{\circ}$, then the longest side in length is

3 a) In the opposite figure:

ABCD is a quadrilateral, $m (/B) = m (/D) = 90^{\circ}, m (/ACB) = 30^{\circ},$ E is the midpoint of \overline{AC}

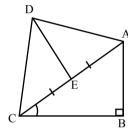
Prove that: AB = DE

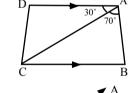
m (
$$\angle$$
BAC) = 70° and m (\angle DAC) = 30° \overline{AD} // \overline{BC}

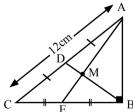
Prove that: AC > CB

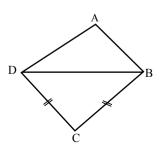
4 a) In the opposite figure:

ABC is a right-angled triangle at B, \overline{AE} and \overline{BD} are two medians of the triangle intersecting at M if AC = 12cmCalculate the length of each \overline{BD} and \overline{MD}

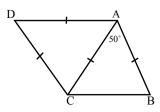

b) In the opposite figure:


ABCD is a quadrilateral in which:


$$AD > AB$$
 and $BC = CD$


Prove that:

$$M(\angle ABC) > M(\angle ADC)$$



5 a) In the opposite figure:

$$AB = AC = CD = DA$$

$$m (\angle BAC) = 50^{\circ}$$

Find: m (/ BCD)

b)
$$\triangle$$
 ABC which: m (\angle A) = (5x +2)°, m (\angle B) = (6X - 10)°, m (\angle C) = (X +20)°

Arrange the lengths of the side: of the triangle in an ascending order.

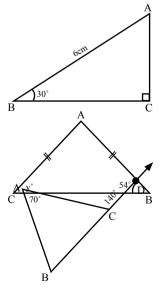
Minia

22

Minia Educational Directorate

1 Complete:

- 1) The number of symmetrical axes in the equilateral triangle is
- 2) The base angls in an isosceles triangle are
- 3) If the length of two sides in an isosce les triangle were 3 cm, 7 cm then the length of the third side = cm.
- 4) Triangle ABC in which AB = 3 cm, BC = 5 cm, then AC \in]......
- 5) The longest side length in the right angled triangle is


2 Choose:

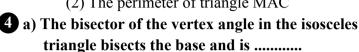
- 3) In the opposite figure: AC = (6 cm, 3 cm, 12 cm, 2 cm)
- 4) In the opposite figure:

$$Y^{\circ}$$
=......(54°, 126°, 63°, 180°)

5) In the opposite figure:

$$(AB, CB, BD, CD) =$$

3 Line segment AB which its length 6 cm, draw the straight line (L) the symmetry in the figure opposite:

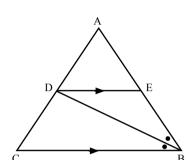

ABC is a triangle, X in a mid-point AB, Y in a mid-point BC,

$$XY = 5 \text{ cm} = \overline{XY} \cap \overline{AY} = \{M\}$$

Where CM = 8 cm, YM = 3 cm

Find: (1) The perimeter of triangle MXY

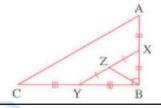
(2) The perimeter of triangle MAC



 \overline{BD} bisects \angle ABC and intersects \overline{AC} at D.

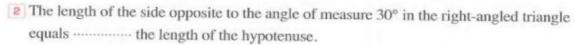
 $\overline{DE} // \overline{BC}$ wherer $E \in \overline{AB}$

Prove: the triangle EBD is an isosceles triangle


- **5** a) The length of median draw from the vertex of the right angle in a triangle is equal
 - b) Triangle ABC in which AB = 2.7 cm, BC = 8.5 cm, AC = 6 cm, Order the measure of angles of the triangle ascendingly.

Exam (1) geometry:

Complete the following:

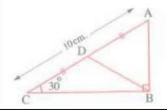

- 1 The base angles of the isosceles triangle are
- 2 In \triangle ABC, if $\overline{AB} \perp \overline{BC}$ and AB = BC, then m (\angle A) =
- 3 In \triangle ABC, if AB > AC, then m (\angle C) m (\angle B)
- The triangle whose side lengths are (2×-1) cm., (X + 3) cm., (X + 3) cm., (X + 3) cm. becomes an equilateral triangle when (X = 0.0000) cm.
- 5 In the opposite figure :

Choose the correct answer:

1 In Δ ABC	\rightarrow if AC = 4 cm.	,BC = 3 cm.	, then m (∠ B)	m (LA)
------------	-----------------------------	--------------	------------	------	-----	----	---

- (a) >
- (b) <
- (c) =
- (d) ≤

- (a) half
- (b) twice
- (c) third
- (d) quarter
- 3 In \triangle ABC , if m (\angle A) = 100° and AB = AC , then m (\angle ABC) =
 - (a) 80°
- (b) 60°
- (c) 40°
- (d) 30°
- The point of intersection of the medians of the triangle divides each of them in the ratio from the base.
 - (a) 1:3
- (b) 3:1
- (c) 1:2
- (d) 2:1
- $\fbox{5}$ If \triangle ABD is obtuse-angled at B and C is the midpoint of \fbox{BD} , then the longest side is
 - (a) AB
- (b) AC
- (c) AD
- (d) BD
- The triangle whose side lengths are 2 cm., (x + 3) cm. and 5 cm., becomes an isosceles triangle when $x = \dots$ cm.
 - (a) 1
- (b) 2
- (0) 3
- (d) 4


Question 3:

- [a] In \triangle ABC, if m (\angle A) = (6 X)°, m (\angle B) = (4 X 9)° and m (\angle C) = 5 (X \angle), arrange the side lengths of \triangle ABC ascendingly.
- (b) In the opposite figure:

$$m (\angle ABC) = 90^{\circ}, m (\angle C) = 30^{\circ}$$

, AD = DC and AC = 10 cm.

Find: The perimeter of A ABD

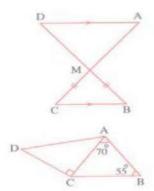
Question 4:

[a] In the opposite figure :

If $\overline{AC} \cap \overline{BD} = \{M\}$

 $, \overline{AD} // \overline{BC}$ and $\overline{MB} = \overline{MC}$

prove that :


Δ MAD is isosceles.

[b] In the opposite figure :

 $m (\angle BAC) = 70^{\circ} \cdot m (\angle B) = 55^{\circ}$

and m (\angle ACD) = 90°

Prove that : AD > AB

Question 5:

[a] In the opposite figure :

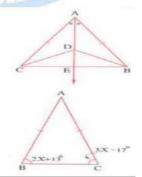
ABC is a triangle in which AB = AC

, AE bisects ∠ BAC

Prove that :

$$\mathbf{BE} = \frac{1}{2} \mathbf{BC}$$

BD = CD


[b] In the opposite figure :

 $AB = AC \cdot m (\angle B) = 2 \times + 13^{\circ}$

• m (\angle C) = 3 \times – 17°

Find

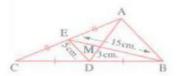
The measures of the angles of A ABC

Exam (2) geometry;

Complete the following:

	edian of an isosceles triangle from the vertex angle bisects and is adicular to
2 The m	easure of the exterior angle at any vertex of the equilateral triangle is
The ba	se angles of the isosceles triangle are
4 ABC is	s a triangle in which AB = 4 cm. , BC = 6 cm. , then AC ∈], ,
5 The lo	ngest side in the right-angled triangle is

Choose the correct ans	wer:	HVS	
1 An isosceles trian the third side equa		engths 6 cm. and 1	2 cm., then the length of
(a) 6	(b) 9	(c) 12	(d) 18
2 In ∆ XYZ , if m ($\angle Y$) = 115°, then the	e longest side is	*************
(a) XY		(b) YZ	
(c) ZX		(d) the median of	of the triangle.
The lengths 5 cm.	, 4 cm. and	cm, are lengths of	sides of a triangle.
(a) 8	(b) 9	(c) 12	(d) 10
4 The triangle havir	ng two angles of meas	ures 74° and 53° is	s triangle.
(a) an isosceles	(b) an equilateral	(c) a scalene	(d) a right-angled
The intersection p 1: from		f a triangle divides	each median by the ratio
(a) 1	(b) 2	(c) 3	(d) 4
	riangle have unequal l measure from tha	A CONTRACTOR OF THE CONTRACTOR	maller side is opposite to the other side.
(a) greater	(b) smaller	(c) equal	(d) otherwise



Question 3:

[a] In the opposite figure:

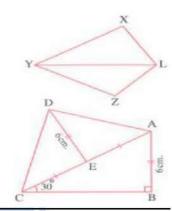
If E is the midpoint of \overline{AC} and D is the midpoint of \overline{BC}

- , ED = 5 cm., MD = 3 cm. and BE = 15 cm.
- , find : The perimeter of \triangle AMB
- [b] ABC is a triangle in which: $m (\angle B) = 40^{\circ}$, $m (\angle C) = 80^{\circ}$ Arrange its side lengths ascendingly.

Question 4:

[a] In the opposite figure :

If XY > XL


- , YZ > ZL
- , prove that : m (\angle XLZ) > m (\angle XYZ)
- [b] In the opposite figure:

$$m (\angle B) = 90^{\circ}, m (\angle ACB) = 30^{\circ}$$

E is the midpoint of \overline{AC} and $\overline{AB} = \overline{DE} = 6$ cm.

Find: 1 The length of AC

2 m (∠ ADC)

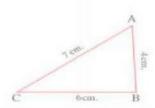
Question 5:

[a] In the opposite figure:

 $\overline{AD} // \overline{BC}$, m ($\angle BAC$) = 70°

, m (∠ DAC) = 30°

Prove that : AC > BC



[b] In the opposite figure:

AB = 4 cm., BC = 6 cm.

 $_{9}$ AC = 7 cm.

Arrange the measures of the angles of the triangle ABC descendingly.

Exam (3) geometry:

Complete the following:

1	The length of the side which is opposite to the angle of measure 30° in the right-angled	1
	triangle equals the length of the hypotenuse.	

- 2 In the right-angled triangle, the longest side is the
- 3 The straight line drawn from the vertex of the isosceles triangle, perpendicular to the base this vertex.
- 4 The measure of the exterior angle of the equilateral triangle equals°
- 5 The number of axes of symmetry of the isosceles triangle is

Choose the correct answer:

1	In \triangle ABC	, if $AB = AC$	$, m (\angle B)$	= 40° • t	then m ($\angle A) =$	

- (a) 70°
- (b) 55°
- (c) 100°
- (d) 40°

2 The point of concurrence of the medians of the triangle divides each median at the ratio from the vertex.

- (a) 1:2
- (b) 2:1
- (0) 2:3
- (d) 1:3

3 In \triangle ABC, if AB = 7 cm., BC = 10 cm., then the length of AC must satisfy which of the following inequalities?

- (a) $3 \le AC \le 17$ (b) 3 < AC < 17 (c) 10 < AC < 20 (d) 14 < AC < 20

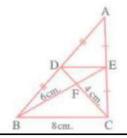
4 If Δ ABD is obtuse-angled at B and C is the midpoint of BD, then the longest side in Δ ABD is

- (a) AB
- (b) AC
- (c) AD
- (d) BD

- (a) AB
- (b) AC
- (e) BC
- (d) otherwise.

Question 3:

[a] XYZ is a triangle in which $m (\angle X) = 60^{\circ}$, $m (\angle Y) = 50^{\circ}$ Order the lengths of the sides of the triangle descendingly.

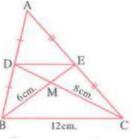

[b] In the opposite figure:

ABC is a triangle in which D , E are the midpoints of \overline{AB} , \overline{AC}

$$, FC = 4 \text{ cm.}$$
 $, FB = 6 \text{ cm.}$

 $_{9}BC = 8 \text{ cm}$.

Find: The perimeter of \triangle DFE

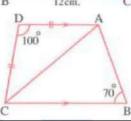

Question 4:

[a] In the opposite figure:

In \triangle ABC : \overline{BE} , \overline{CD} are two medians, $\overline{MB} = 6$ cm.

$$, BC = 12 \text{ cm}. , MC = 8 \text{ cm}.$$

Find: The perimeter of \triangle MDE


[b] In the opposite figure:

$$\overline{AD} // \overline{BC}$$
, $AD = DC$

$$m (\angle D) = 100^{\circ}, m (\angle B) = 70^{\circ}$$

Prove that : 1 AC > AB

Question 5:

In the opposite figure:

ABC is a triangle, AB = AC, $m (\angle B) = (X + 5)^{\circ}$

$$m (\angle C) = (2 X - 15)^{\circ}$$

Find: m (∠ A) (show all of your work)

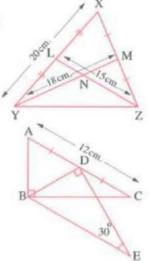
[b] In the opposite figure:

N is the point of concurrence of the medians of the triangle XYZ

LZ = 15 cm. YM = 18 cm.

, XY = 20 cm.

Find: The perimeter of the triangle NLY

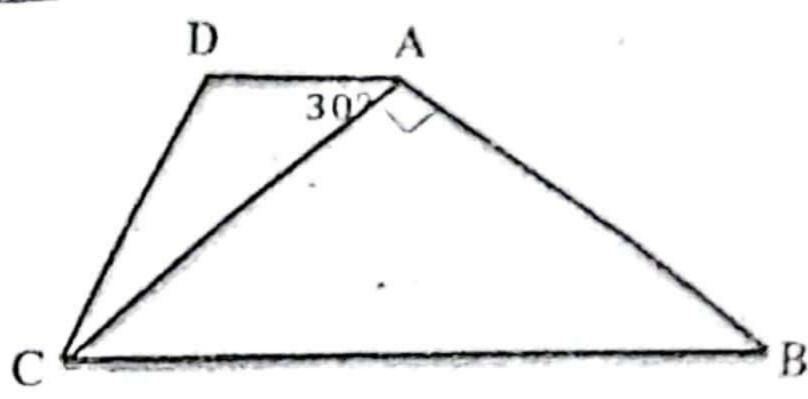

[c] In the opposite figure:

 $m (\angle ABC) = m (\angle BDE) = 90^{\circ}$

, D is the midpoint of AC

 $m (\angle E) = 30^{\circ} AC = 12 cm.$

Find with proof: The length of BE

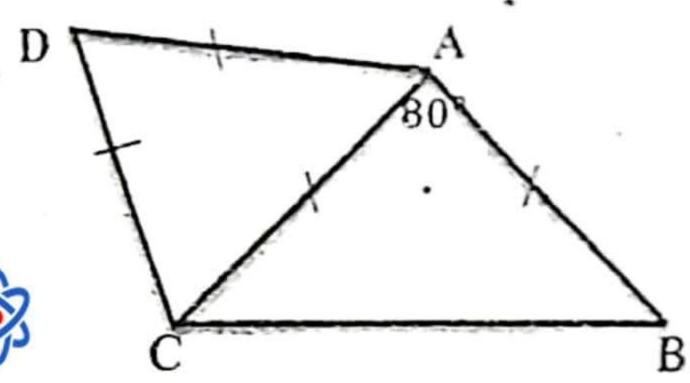

Wish you all the best

Alexandria Governorate	First Term 2021-2022	Middle: Two
El-Montaza Educational Zone	Model (B)	Subject : Geometry
Mathematics directing		Time: 2 hours
Q1: Choose-the correct answer	described to an analysis of the transfer of the second of	
1) If the lengths of two sides in an iso	sceles triangle are 8 cm and	4 cm, then
the length of the third side is		
(a.3,b.4	, c. 8 , d.	. 12)
2) \triangle XYZ in which m ($<$ Z) = 70° ,	$m (< Y) = 60^{\circ}$, then YZ	XY
(a. > , b. <	, $c. = $, $d.$	Twice)
3) The sum of the measures of the ac	cumulative angles at the poin	nt equals
(a. 60°, b. 9	00° , c. 180° ,	d. 360°)
a) △ ABC is a right-angled triangle a	t B, AC = 20 cm and D is th	e midpoint of AC
then BD = cm		
(a. 10, b. 8	, c. 6 ,	d. 5)
5) If \triangle ABC $\equiv \triangle$ XYZ, then AB =	•••••	
(a. XZ , b. XY	, c. YZ ,	1. BC)
6) \triangle ABC, if AB = 6 cm and BC = 9	and the second s	
. (a.]3,15[, b. [3,1		d. [3,15[)
	ROBERT CONTROL OF THE PARTY OF	A CALL DE LA TRANSPORTE
Q2: Complete each of the following		•
) The bisector of the vertex angle of		
) The length of any side in a triangle	ethe sum of lengths of	f the two other sides.
) The measure of each of two equal	complementary angles equa	ıls
) The number of axes of symmetry	of the isosceles triangle is	
If the measure of one angle of an i		
		A HELD GOVERNMENT OF THE PROPERTY OF THE PARTY.
3: a) Arrange the measures of the	angles of Δ LMN, If LM =	3 cm, $MN = 5 cm$ and
LN = 7 cm		
	المنحان النعليمي	A A
b) In the opposite figure:	the traction of the	
ABC is a right-angled triangle at	$tRm($	n/
AC = 8 cm and D is the midpoin		
Find by proof: The perimeter of	I A ABD	R
(بقية الاسئلة في الورقة الثانية	Ç	
		طبيبي الامتحان التعليمي

الورقة الثانية

Q4: a) In the opposite figure: $\overline{AD} // \overline{BC}$, m (< BAC) = 90° and m (< DAC) = 30°

Prove that: BC > AB



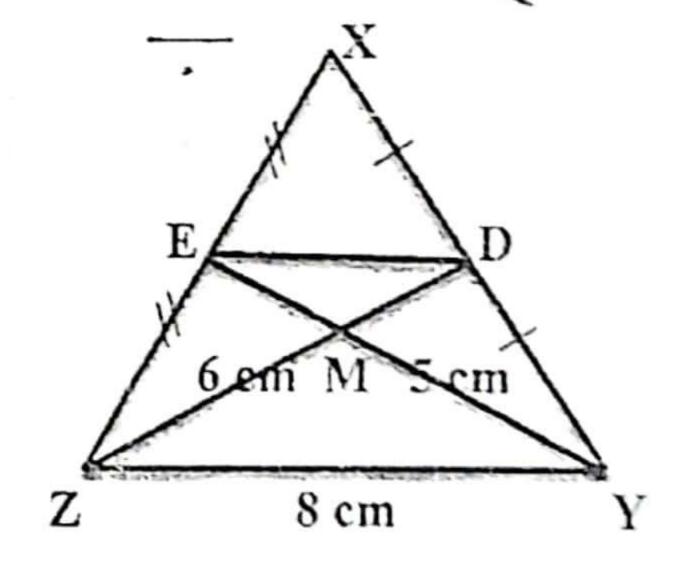
b) In the opposite figure:

$$AB = AC = AD = DC$$

and m (< BAC) = 80°

Find by proof: m (< BCD)

www.exam-eg.com

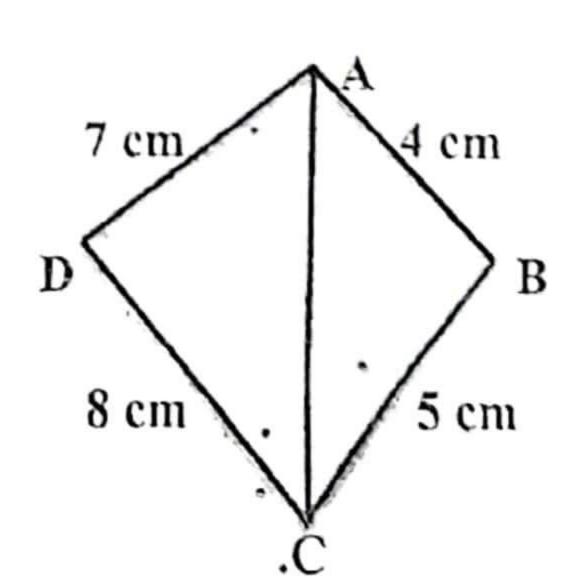

Q5: a) In the opposite figure:

A XYZ in which, D is the midpoint of XY

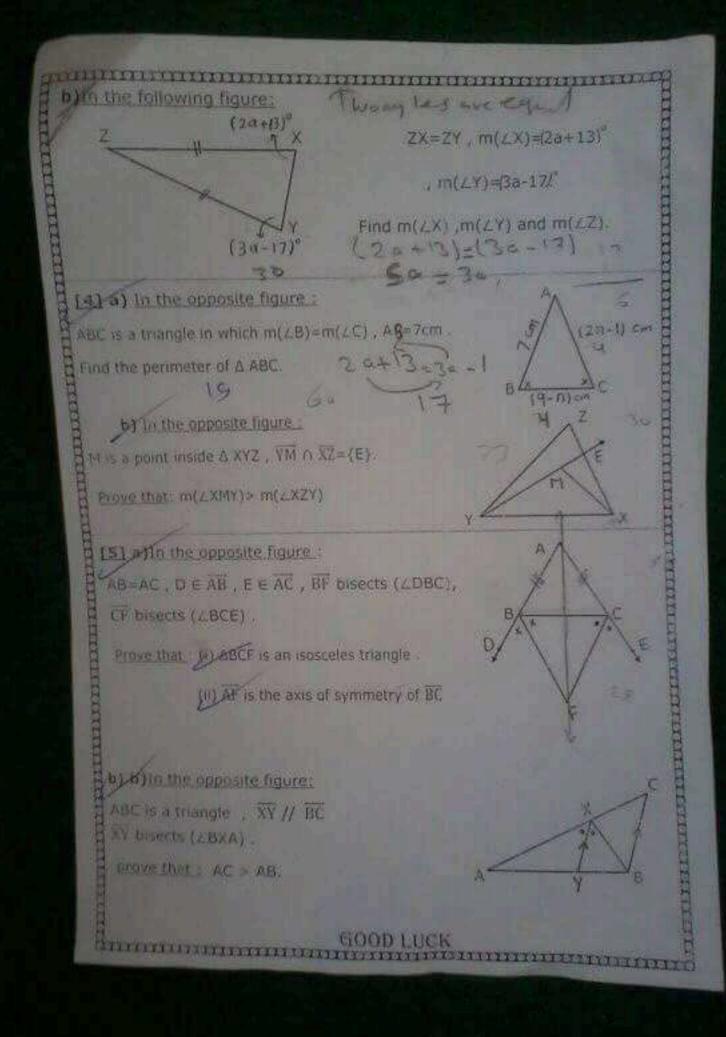
E is the midpoint of \overline{XZ} , YZ = 8 cm

MZ = 6 cm, MY = 5 cm

Find by proof: The perimeter of A MED


b) In the opposite figure:

ABCD is a quadrilateral


in which AB = 4 cm, BC = 5 cm

and CD = 8 cm, AD = 7 cm

Prove that: m (< BAD) > m (< BCD)

iza governor: ^p of October esham Kamal	directorate Te'ma official langu	age school ear Exam (2017/201	Subject: Geometry Duration: two hours Grade: prep. two 8)
1]Choose th	e correct answer:	1 15/27/51	
1)The measur		e of an equilateral tria	
a) 60	b) 120°	c) 90°	d) 180°
2) Ith ABC ,	if $m(\angle B) + m(\angle C) = 9$	0°, then Z.A is	angle.
a) acute	b) right	c)obtuse	d)parallel
3/1/ M is the	point of intersection of	of the medians of \triangle XX	/Z and D is the midpoint
of XZ, then	MD =		10
a) 3 XM	b) $\frac{1}{3}$ YD	c) 3/2 YM _ E	△ , d) 2 MY
	whose sides length:	s are 2cm , (x+3)cm	and 5cm is an isosceles
a) zero	b)1	c)3	d)2
5) 1f 6cm , 9c a) [3,15]	m are two sides leng b)]3,15]	ths of a triangle , the c)[3,15[n the third side € d)[3,15]
	HIMMINGS AND		
3)=	b) <	XY, then m(∠Z) c)>	
	te each of the fol	The state of the s	d)twice
Little straigh	tline that is perpend	ZIEIII SANTENIA SECO	ent from its middle is calle
		igled triangle is the	by & tom more by
)=30°, then LN=	
		. , 1/2	
13T along	s a right and	2-2	426
DV ACOL	s a right-angled to	nangle at B,	- P/V
	So weescu't	is the midpoint o	AC. / Te

Sharkia Edu. pirrctorate 274 ha), (Geometry) Fakous official land, school (Land (First term) 2017 – 2018	Second prep Time: 2 hour
b) The longest side in the right angled triangle is. b) The axis of symbletry of a line segment is the straight line at the straight l	which At its midpoint
e) The bi-tor of the vertex angle of the isosceles triangle	
2/Choose the correct	
b) The numbers 5.4. equal	(1, 2, 3, 0)
d) XYZ is a d in which my car.	(8, 9, 10, 12)
then AD	XY (> , < , = , Twice) is midpoint of BC.
3)a)In the opposite figure;	(2AM, 3MD, AM, 4MD)
$m(\angle B) = 90\%E$ is midpoint = 50.4	D 1 1
and point of DC missen as	1
- Cinat: AB = FC	C (10)
of the opposite time	A-
, BC < CD	
Prove that my	
the opposite figure	
1 = 50 AR = AC	200
ABC is an equilatoral A	
m(ZARDI	65 SA A
b)In the opposite figure	D A
AD BC, m (∠DAC)=50°, (∠BAC)=70°	100
Prove that : BC > AC	6
5) a)In the opposite figure	CICE WAY
F and N are the midpoints of \overline{AB} , \overline{AC} respectively,	A ^A
BN O CE-INALITAR - 5 am AS AS	10.
$BN \cap CF = \{M\}, \text{if } AB = 6 \text{ cm}, AC = 10 \text{ cm}$	343 10
b)In the opposite figure;	
$AB > AC$, BD bisects $\angle B$ and CD bisetts $\angle C$	^
Prove that ,BD > DC	che de
	N. C.